【题目】某单位为了响应疫情期间有序复工复产的号召,组织从疫区回来的甲、乙、丙、丁4名员工进行核酸检测,现采用抽签法决定检测顺序,在“员工甲不是第一个检测,员工乙不是最后一个检测”的条件下,员工丙第一个检测的概率为( )
A.B.C.D.
【答案】B
【解析】
根据条件概率公式,求出事件“员工甲不是第一个检测,员工乙不是最后一个检测”的概率,可分为两类,甲最后检测或甲不是最后检测,结合排列知识即可求解,再求出“员工丙第一个检测,员工乙不是最后一个检测”的概率,即可求解.
先求,法一(优先考虑特殊元素特殊位置):
设事件为“员工甲不是第一个检测,员工乙不是最后一个检测”;
事件为“员工丙第一个检测”.事件分两类:甲最后检测,
则剩下的3名员工可以随便排序,方法数为;
甲不是最后检测,则中间两个位置选1个位置为甲,
然后剩下的位置除了最后一个位置,选一个位置给乙,
其余的员工随便排,方法数为,
故;
法二(排除法),.
再求,员工甲不是第一个检测,员工乙不是最后一个检测,
员工丙是第一个检测,则先排丙在第一个位置,
然后除了第一个位置和最后一个位置选1个位置给乙,
剩下的两个员工随便排,方法数,故.
综上.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知直线x=﹣2上有一动点Q,过点Q作直线l,垂直于y轴,动点P在l1上,且满足(O为坐标原点),记点P的轨迹为C.
(1)求曲线C的方程;
(2)已知定点M(,0),N(,0),点A为曲线C上一点,直线AM交曲线C于另一点B,且点A在线段MB上,直线AN交曲线C于另一点D,求△MBD的内切圆半径r的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 | 2 | 4 | ||
0 | 4 |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于两点,且设定点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于两点,且设定点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;
②用来刻画回归效果,越大,说明模型的拟合效果越好;
③根据列联表中的数据计算得出的的值越大,两类变量相关的可能性就越大;
④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;
⑤从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.
其中真命题的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形和高为的等腰梯形所在的平面互相垂直,,,与交于点,点为线段上任意一点.
(Ⅰ)求证:平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)是否存在点使平面与平面垂直,若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com