精英家教网 > 高中数学 > 题目详情
20.求函数y=$\frac{4}{si{n}^{2}x}$+sin2x的最小值.

分析 分解函数为两个函数,利用基本不等式以及函数的最值求解即可.

解答 解:函数y=$\frac{4}{si{n}^{2}x}$+sin2x=$\frac{3}{si{n}^{2}x}$+$\frac{1}{si{n}^{2}x}+{sin}^{2}x$≥3+2$\sqrt{\frac{1}{si{n}^{2}x}•{sin}^{2}x}$=5.当且仅当sin2x=1时取等号.
函数y=$\frac{4}{si{n}^{2}x}$+sin2x的最小值为:5.

点评 本题考查基本不等式的应用,函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知某三棱锥的三视图如图所示,这这个三棱锥的体积是$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:$\underset{lim}{n→∞}$[$\frac{1}{1×6}$+$\frac{1}{6×11}$+$\frac{1}{11×16}$+…+$\frac{1}{(5n-4)(5n+1)}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.关于x的方程x2+px+q=0和x2+qx+p=0都有两个不相等的实数根,且它们有且仅有一个公共根,则其余两个不同根之和为 (  )
A.1B.-1C.p+qD.-p-q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{\frac{1-{2}^{x}}{1+{2}^{x}}}$.
(1)求f(x)的定义域;
(2)判断f(x)在定义域内的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mx-1,g(x)=x2-2mx+m
(1)m=1时,求g(x)的单调增区间;
(2)记函数G(x)=g(x)+f(x)
①若函数y=|G(x)|在[2,4]上单调递增,求实数m的范围;
②是否存在整数a,b,使得关于x的不等式a≤G(x)≤b的解集为[a,b],若存在求出a,b的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.数列{(-1)n-1n2}的前n项之和为$\left\{\begin{array}{l}{-\frac{n(n+1)}{2},n为偶数}\\{-\frac{n(n-1)}{2}+(-1)^{n-1}{n}^{2},n为奇数}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.集合M={(x,y)|y2=2x},N={(x,y)|(x-a)2+y2=1},若M∩N≠∅,求a的范围.某同学解法如下:联立方程得(x-a)2+2x=1,△≥0,解之a≤1,该同学解法是否正确.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.写出数列-$\frac{1}{2×1}$,$\frac{1}{2×2}$,-$\frac{1}{2×3}$,$\frac{1}{2×4}$的一个通项公式an=(-1)n•$\frac{1}{2n}$.

查看答案和解析>>

同步练习册答案