17£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µãΪF1£¬F2£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬ÇÒ|PF1|+|PF2|=2$\sqrt{2}$£¬ËüµÄ½¹¾àΪ2£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚÕýʵÊýt£¬Ê¹Ö±Ïßx-y+t=0ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬ÇÒÏ߶ÎABµÄÖеãÔÚÔ²x2+y2=$\frac{5}{6}$ÉÏ£¬Èô´æÔÚ£¬ÇótµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝÍÖÔ²µÄ¶¨Òå¿ÉÇó³öa£¬ÔÙÀûÓÃa2=b2+c2Çó³öc¼´¿É£»
£¨2£©ÁªÁ¢·½³Ì×éÀûÓÃΤ´ï¶¨ÀíÇó³öx1+x2=$-\frac{4t}{3}$£¬y1+y2=x1+x2+2t=$\frac{2t}{3}$£¬´øÈëÖеã×ø±êµ½Ô²·½³Ì¼´¿ÉÇó³ötÖµ£®

½â´ð ½â£º£¨1£©ÒòΪF1£¬F2Ϊ×ó¡¢ÓÒ½¹µã£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬ÇÒ|PF1|+|PF2|=2$\sqrt{2}$
¡àa=$\sqrt{2}$£»
¡ß2c=2⇒c=1£»
¡àb=$\sqrt{{a}^{2}-{c}^{2}}$=1£»
ËùÒÔ£¬ÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{2}+{y}^{2}=1$
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x-y+t=0}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬»¯¼òºóÓУº3x2+4tx+2t2-2=0  ¢Ù£»
ÓÉ¢ÙÖª£ºx1+x2=$-\frac{4t}{3}$ 
ËùÒÔ£ºy1+y2=x1+x2+2t=$\frac{2t}{3}$£»
ÓÉÓÚÏ߶ÎABµÄÖеãÔÚÔ²x2+y2=$\frac{5}{6}$ÉÏ£¬
ËùÒÔÓУº$£¨-\frac{2t}{3}£©^{2}+£¨\frac{t}{3}£©^{2}=\frac{5}{6}$⇒t=¡À$\frac{\sqrt{6}}{2}$£¨¸ºÉᣩ£»
¹Ê´æÔÚt=$\frac{\sqrt{6}}{2}$Âú×ãÌâÒâ

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²·½³Ì»ù´¡¶¨Ò壬ÒÔ¼°Î¤´ï¶¨ÀíÔÚÍÖÔ²ÓëÖ±Ïß×ÛºÏÖеÄÓ¦Óã¬ÊôÖеÈÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖª$\frac{sin¦Á-2cos¦Á}{3sin¦Á+5cos¦Á}$=2£¬Ôòtan¦ÁµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{12}{5}$B£®-$\frac{12}{5}$C£®$\frac{5}{12}$D£®-$\frac{5}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$=£¨1£¬3£©£¬$\overrightarrow{b}$=£¨3£¬t£©£¬Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÔòʵÊýtµÄֵΪ£¨¡¡¡¡£©
A£®-9B£®-1C£®1D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôx£¾0£¬y£¾0ÇÒ2x+y=3£¬Ôò$\frac{1}{x}+\frac{1}{y}$µÄ×îСֵÊÇ$\frac{1}{3}£¨3+2\sqrt{2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªf£¨¦Á£©=$\frac{sin£¨\frac{3¦Ð}{2}+¦Á£©cos£¨2¦Ð-a£©tan£¨¦Ð+¦Á£©}{cos£¨-\frac{¦Ð}{2}-¦Á£©}$£¬Ôòf£¨-$\frac{31¦Ð}{3}$£©µÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®-$\frac{1}{2}$C£®$\frac{\sqrt{3}}{2}$D£®-$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬Ê×Ïîa1=d£¬ÊýÁÐ{an2}µÄÇ°nÏîºÍΪSn£¬µÈ±ÈÊýÁÐ{bn}Êǹ«±ÈqСÓÚ1µÄÕýÏÒÓÐÀíÊýÁУ¬Ê×Ïîb1=d2£¬ÆäÇ°nÏîºÍΪTn£¬Èô$\frac{{S}_{3}}{{T}_{3}}$ÊÇÕýÕûÊý£¬ÔòqµÄ¿ÉÄÜȡֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{7}$B£®$\frac{3}{7}$C£®$\frac{1}{2}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®iΪÐéÊýµ¥Î»£¬Ôò${£¨\frac{1+i}{1-i}£©^{2007}}$=£¨¡¡¡¡£©
A£®-iB£®-1C£®iD£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÈçͼËùʾ£¬Á½º¯Êýy1=k1x+bºÍy2=k2xµÄͼÏóÏཻÓڵ㣨-1£¬-2£©£¬Ôò¹ØÓÚxµÄ²»µÈʽ k1x+b£¾k2xµÄ½â¼¯Îª£¨¡¡¡¡£©
A£®x£¾-1B£®x£¼-1C£®x£¼-2D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èô¼¯ºÏA={x|x2-9x£¼0}£¬B={x|1£¼2x£¼8}£¬Ôò¼¯ºÏA¡ÉB=£¨0£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸