分析 (1)将点A,B的坐标带入f(x)解析式便可得到关于k,b的二元一次方程组,从而可解出k,b;
(2)根据增函数的定义,设任意的x1<x2,然后作差,从而证明f(x1)<f(x2)便可得出f(x)在(-∞,+∞)上为增函数.
解答 解:(1)f(x)的图象经过点A(1,4),B(2,7);
∴$\left\{\begin{array}{l}{k+b=4}\\{2k+b=7}\end{array}\right.$;
∴k=3,b=1;
(2)证明:f(x)=3x+1,设x1,x2∈(-∞,+∞),且x1<x2,则:
f(x1)-f(x2)=3(x1-x2);
∵x1<x2;
∴x1-x2<0;
∴f(x1)<f(x2);
∴x∈(-∞,+∞)时,f(x)是增函数.
点评 考查图象上点的坐标和对应函数解析式的关系,增函数的定义,根据增函数的定义证明一个函数为增函数的方法和过程.
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{π}{6}$] | B. | [$\frac{π}{6}$,$\frac{π}{2}$) | C. | (0,$\frac{π}{3}$] | D. | [$\frac{π}{3}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com