已知x=1是函数的一个极值点,
(Ⅰ)求a的值;
(Ⅱ)当时,证明:
科目:高中数学 来源: 题型:解答题
已知函数在上是增函数,上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数m的取值范围;
(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(,为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的,恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设,.
(Ⅰ)当时,求曲线在处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数是上的正函数,区间叫做函数的等域区间.
已知是上的正函数,求的等域区间;
试探求是否存在,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=-(a+2)x+lnx.
(1)当a=1时,求曲线y=f(x)在点(1,f (1))处的切线方程;
(2)当a>0时,若f(x)在区间[1,e)上的最小值为-2,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com