精英家教网 > 高中数学 > 题目详情

【题目】造纸术是我国古代四大发明之一.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以等标记来表示纸张的幅面规格.复印纸幅面规格只采用系列和系列,其中系列的幅面规格为:①规格的纸张的幅宽(以表示)和长度(以表示)的比例关系为;②将纸张沿长度方向对开成两等分,便成为规格.纸张沿长度方向对开成两等分,便成为规格,,如此对开至规格.现有纸各一张.纸的面积为,则这9张纸的面积之和等于______.

【答案】

【解析】

根据题意,求出纸张的长度和宽度,构造纸张面积的等比数列,利用等比数列前项和的计算公式,即可求得.

由题可设,纸的面积为

根据题意,纸张面积是首项为,公比为的等比数列,

则容易知纸张的面积为,故可得

故纸张面积是一个首项为,公比为的等比数列,

张纸的面积之和为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且△PF1F2的面积为2

1)求椭圆的标准方程;

2)设斜率为1的直线与以原点为圆心,半径为的圆交于AB两点,与椭圆C交于CD两点,且),当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一年之计在于春,一日之计在于晨,春天是播种的季节,是希望的开端.某种植户对一块地的个坑进行播种,每个坑播3粒种子,每粒种子发芽的概率均为,且每粒种子是否发芽相互独立.对每一个坑而言,如果至少有两粒种子发芽,则不需要进行补播种,否则要补播种.

(1)当取何值时,有3个坑要补播种的概率最大?最大概率为多少?

(2)当时,用表示要补播种的坑的个数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)设a,b∈M,证明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,关于正方体,有下列四个命题:

与平面所成角为45°

②三棱锥与三棱锥的体积比为

③存在唯一平面.使平面截此正方体所得截面为正六边形;

④过作平面,使得棱在平面上的正投影的长度相等.则这样的平面有且仅有一个.

上述四个命题中,正确命题的序号为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】与定点的距离和它到直线的距离的比是常数,设点的轨迹为曲线.

1)求曲线的方程;

2)过点的直线与曲线交于两点,设的中点为两点为曲线上关于原点对称的两点,且),求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于不同的两点为抛物线的焦点,为坐标原点,的重心,直线恒过点.

1)若,求直线斜率的取值范围;

2)若是半椭圆上的动点,直线与抛物线交于不同的两点.时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面ABCD为直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD为等边三角形,平面ABCD⊥平面PAD;点EM分别为PDPC的中点.

1)证明:CE//平面PAB

2)求三棱锥MBAD的体积;

3)求直线DM与平面ABM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地种植常规稻A和杂交稻B,常规稻A的亩产稳定为500公斤,今年单价为3.50元/公斤,估计明年单价不变的可能性为10%,变为3.60元/公斤的可能性为60%,变为3.70元/公斤的可能性为30%.统计杂交稻B的亩产数据,得到亩产的频率分布直方图如下;统计近10年来杂交稻B的单价(单位:元/公斤)与种植亩数(单位:万亩)的关系,得到的10组数据记为,并得到散点图如下,参考数据见下.

(1)估计明年常规稻A的单价平均值;

(2)在频率分布直方图中,各组的取值按中间值来计算,求杂交稻B的亩产平均值;以频率作为概率,预计将来三年中至少有二年,杂交稻B的亩产超过765公斤的概率;

(3)判断杂交稻B的单价y(单位:元/公斤)与种植亩数x(单位:万亩)是否线性相关?若相关,试根据以下的参考数据求出y关于x的线性回归方程;调查得知明年此地杂交稻B的种植亩数预计为2万亩.若在常规稻A和杂交稻B中选择,明年种植哪种水稻收入更高?

统计参考数据:

附:线性回归方程

查看答案和解析>>

同步练习册答案