精英家教网 > 高中数学 > 题目详情
4.已知集合A={(x,y)|y=x2},B={(x,y)|y=x},则A∩B=(  )
A.{0,1}B.{(0,0),(1,1)}C.{1}D.{(1,1)}

分析 联立A与B中两方程组成方程组,求出方程组的解即可确定出A与B的交集.

解答 解:联立A与B中的方程得:$\left\{\begin{array}{l}{y={x}^{2}}\\{y=x}\end{array}\right.$,
消去y得:x2=x,即x(x-1)=0,
解得:x=0或x=1,
把x=0代入得:y=0;把x=1代入得:y=1,
∴方程组的解为$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$,$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
则A∩B={(0,0),(1,1)},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如果f(x)=$\left\{\begin{array}{l}{{e}^{x}+x,|x|≤1}\\{0,|x|>1}\end{array}\right.$,那么f[f(-3)]=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一个对称中心是($\frac{π}{8}$,0).
(1)求φ的值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,D是BC的中点,若AB=4,AC=1,∠BAC=60°,则AD=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在R上的函数f(x)满足f(x+1)=2f(x),当x∈(0,1]时,f(x)=x2-x,则$f(\frac{7}{2})$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设奇函数f(x)在(0,+∞)上为单调递增函数,且f(2)=0,则不等式$\frac{{f({-x})-f(x)}}{x}≥0$的解集(  )
A.[-2,0]∪[2,+∞)B.(-∞,-2]∪(0,2]C.(-∞,-2]∪[2,+∞)D.[-2,0)∪(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数$f(x)=\frac{1}{{{2^x}+\sqrt{2}}}$,并且满足f(1+x)+f(-x)为定值,利用课本中推导等差数列前n项和的方法,求f(-4)+f(-3)+…+f(0)+…+f(4)+f(5)的值为$\frac{5\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U=R,集合A={x|x∈R,x2≠1},B={y|ay-1=0},若B⊆∁UA,则a的集合为{-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若二次函数y=ax2(a>0)的图象与不等式组$\left\{\begin{array}{l}{x-3≤0}\\{y-2≥0}\\{y≤x+1}\end{array}\right.$表示的平面区域无公共点,则实数a的取值范围为(  )
A.($\frac{2}{9}$,2)B.($\frac{2}{9}$,$\frac{4}{9}$)C.(0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞)D.(0,$\frac{2}{9}$)∪(2,+∞)

查看答案和解析>>

同步练习册答案