精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)已知函数f(x)=
1
x
+clnx
的图象与x轴相切于点S(s,0).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)的图象与过坐标原点O的直线l相切于点T(t,f(t)),且f(t)≠0,证明:1<t<e;(注:e是自然对数的底)
(Ⅲ)在(Ⅱ)的条件下,记直线ST的倾斜角为α,试证明:
π
4
<α<
12
分析:(Ⅰ)求导数,利用函数f(x)=
1
x
+clnx
的图象与x轴相切于点S(s,0),建立方程,即可求得函数的解析式;
(Ⅱ)先确定直线l的方程为:y=(-
1
t2
+
e
t
)x
,利用T在直线l上,可得实数t必为方程
2
t
+elnt-e=0
,构造函数g(t)=
2
t
+elnt-e
,确定函数的单调性,从而可得t=
1
e
是方程
2
t
+elnt-e=0
在区间(0,
2
e
]
内的唯一一个解,由此可证结论;
(Ⅲ)先证明1<tanα=
e
t
<e
,利用y=tanx在(0,
π
2
)
单调递增,即可证得结论.
解答:(Ⅰ)解:由f(x)=
1
x
+clnx
,得f(x)=-
1
x2
+
c
x
.…(1分)
∵函数f(x)=
1
x
+clnx
的图象与x轴相切于点S(s,0),
f(s)=-
1
s2
+
c
s
=
cs-1
s2
=0
,…①且f(s)=
1
s
+clns=0
….②…(2分)
联立①②得c=e,s=
1
e
.…(3分)
f(x)=
1
x
+elnx
.…(4分)
(Ⅱ)证明:f(x)=-
1
x2
+
e
x

∵函数f(x)=
1
x
+clnx
的图象与直线l相切于点T(t,f(t)),直线l过坐标原点O,
∴直线l的方程为:y=(-
1
t2
+
e
t
)x

又∵T在直线l上,∴实数t必为方程
2
t
+elnt-e=0
….③的解.…(5分)
g(t)=
2
t
+elnt-e
,则g(t)=-
2
t2
+
e
t
=
et-2
t2

解g′(t)>0得t>
2
e
,g′(t)<0得0<t<
2
e

∴函数y=g(t)在(0,
2
e
]
递减,在(
2
e
,+∞)
递增.…(7分)
g(
1
e
)=0
,且函数y=g(t)在(0,
2
e
)
递减,
t=
1
e
是方程
2
t
+elnt-e=0
在区间(0,
2
e
]
内的唯一一个解,
又∵f(
1
e
)=0
,∴t=
1
e
不合题意,即t>
2
e
.…(8分)
∵g(1)=2-e<0,g(e)=
2
e
>0
,函数y=g(t)在(
2
e
,+∞)
递增,
∴必有1<t<e.…(9分)
(Ⅲ)证明:∵T(t,f(t)),S(
1
e
,0)

tanα=kST=
f(t)-0
t-s
=
1
t
+elnt
t-
1
e

由③得tanα=
1
t
+elnt
t-
1
e
=
e
t
,…(10分)
∵t>0,且0≤α<π,∴0<α<
π
2

∵1<t<e,∴1<tanα=
e
t
<e
,…(11分)
tan
π
4
=1
tan
12
=tan(
π
6
+
π
4
)=
tan
π
6
+tan
π
4
1-tan
π
6
tan
π
4
=2+
3
>e
,…(13分)
tan
π
4
<tanα<tan
12

∵y=tanx在(0,
π
2
)
单调递增,∴
π
4
<α<
12
.…(14分)
点评:本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、函数的零点、解不等式、直线方程和三角函数等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、函数与方程思想、特殊与一般思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案