【题目】第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量t(袋),得到如下数据:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数x(万人) | 11 | 9 | 8 | 10 | 12 |
原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
(Ⅰ)请根据所给五组数据,求出t关于x的线性回归方程 ;
(Ⅱ)已知购买原材料的费用C(元)与数量t(袋)的关系为 投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入﹣原材料费用).
(参考公式: = , )
【答案】解:(Ⅰ)由数据,求得 , , 10×25+12×29=1273,
102+122=510,
= ,
,
∴t关于x的线性回归方程为 .
(Ⅱ)由(Ⅰ)中求出的线性回归方程,当x=14时, ,
即预计需要原材料34.2袋,
∵
∴,若t<35,利润L=600t﹣(300t+20)=300t﹣20,
当t=34时,利润Lmax=300×34﹣20=10180元;
若t≥35,利润L=600×34.2﹣290t=20520﹣290t,
当t=35时,利润Lmax=20520﹣290×35=10370元;
综上所述,该餐厅应购买35袋原材料,才能获得最大利润,最大利润是10370元
【解析】(1)由题意求出 , , , ,代入公式求值,从而得到回归直线方程;(2)由(Ⅰ)中求出的线性回归方程,当x=14时, ,根据分段函数C讨论其利润.
科目:高中数学 来源: 题型:
【题目】设公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a11成等比数列,且a11=2(Sm﹣Sn)(m>n>0,m,n∈N*),则m+n的值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: + =1(a>b>0)经过点(1, ),离心率为 ,点A为椭圆C的右顶点,直线l与椭圆相交于不同于点A的两个点P(x1 , y1),Q(x2 , y2).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)当 ⊥ =0时,求△OPQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将正方形ABCD沿对角线BD折成直二面角后的图形如图所示,若E为线段BC的中点,则直线AE与平面ABD所成角的余弦为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 |﹣ |,其中﹣3≤a≤1.
(Ⅰ)当a=1时,解不等式f(x)≥1;
(Ⅱ)对于任意α∈[﹣3,1],不等式f(x)≥m的解集为空集,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求直线A1B和平面BB1C1C所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣4x+a+3:
(1)若函数y=f(x)在[﹣1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com