精英家教网 > 高中数学 > 题目详情
已知函数,f(x)=sin(ωx+
π
3
)且f(
π
6
)=1.
(1)求ω的最小正值及此时函数y=f(x)的表达式;
(2)将(1)中所得函数y=f(x)的图象结果怎样的变换可得y=
1
2
sin
1
2
x的图象.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:(1)由已知可得sin(ω•
π
6
+
π
3
)=1,于是ω•
π
6
+
π
3
=
π
2
+2kπ(k∈Z),当k=0时,ω取得最小正值1.可求解析式y=sin(x+
π
3
);
(2)根据函数y=Asin(ωx+φ)的图象变换规律即可得到y=
1
2
sin
1
2
x的图象.
解答: 解:(本题满分14分)(1)因为f(
π
6
)=1,所以sin(ω•
π
6
+
π
3
)=1,-------(4分)
于是ω•
π
6
+
π
3
=
π
2
+2kπ(k∈Z),即ω=1+12K(k∈Z),
故当k=0时,ω取得最小正值1.此时y=sin(x+
π
3
).----------(7分)
(2)(方法一)先将y=sin(x+
π
3
)的图象向右平移
π
3
个单位得y=sinx的图象;
再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得y=sin
1
2
x的图象;
最后将所得图象上各点的纵坐标缩小到原来的
1
2
倍(横坐标不变)得y=
1
2
sin
1
2
x的图象.-----------------------(14分)
(方法二)先将y=sin(x+
π
3
)的图象各点的横坐标伸长到原来的2倍(纵坐标不变)得y=sin(
1
2
x+
π
3
)的图象;
再将所得图象向右平移
3
个单位得=sin
1
2
x的图象;
最后将所得图象上各点的纵坐标缩小到原来的
1
2
倍(横坐标不变)得y=
1
2
sin
1
2
x的图象.
点评:本题主要考察了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a3=5,a10=19,则a51的值为(  )
A、99B、49
C、101D、102

查看答案和解析>>

科目:高中数学 来源: 题型:

若ln
1
m
+m≤1成立,求m取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是直线l:3x-4y+11=0上的动点,PA、PB是圆C:(x-1)2+(y-1)2=1的两条切线,圆心为C,那么四边形PACB面积的最小值是(  )
A、
2
B、2
2
C、
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f[lg(x+1)]的定义域是(0、9],则f(x2)的定义域是(  )
A、[-1,1]
B、(-1,1)
C、[-1,0)∪(0,1]
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x-
π
3
)
的图象向左平移φ(φ>0)个单位,得到的图象对应的函数为f(x),若f(x)为奇函数,则φ的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

把一个周长为18cm的长方形围成一个圆柱.
(1)求圆柱的体积V(x)关于圆柱底面周长x的函数,并指出定义域;
(2)当圆柱的体积V(x)最大时,求圆柱的底面周长与高的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

方程lnx+2x=6的根属于区间(  )
A、(1,2)
B、(
5
2
,4)
C、(1,
7
4
D、(
7
4
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=32x-(k+1)3x-2,当x∈[1,+∞]时,f(x)恒为正值,则k的取值范围是
 

查看答案和解析>>

同步练习册答案