【题目】已知函数.
(1)解不等式;
(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+1的导数满足,,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设,求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面ABCD为菱形,,Q是AD的中点.
(Ⅰ)若,求证:平面PQB平面PAD;
(Ⅱ)若平面APD平面ABCD,且,点M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述:
①化简的结果为﹣.
②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;
③函数y=log3x+x2﹣2在定义域内只有一个零点;
④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.
其中正确的结论序号是_____
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2﹣ =1的离心率为en , 且e2=2,求e12+e22+…+en2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com