精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)解不等式

(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.

【答案】(1)(1,3);(2) .

【解析】

(1)设t=2x,利用fx)>16﹣9×2x,转化不等式为二次不等式,求解即可;

(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果.

解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,

t2﹣10t+16<0

∴2<t<8,即2<2x<8,∴1<x<3

不等式的解集为(1,3).

(2) 由题意得

解得.

2ag(x)+h(2x)≥0,即,对任意x[1,2]恒成立,

x[1,2]时,令

上单调递增,

时,有最大值

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx)=x3ax2bx+1的导数满足,其中常数abR.

(1)求曲线yfx)在点(1,f(1))处的切线方程;

(2)设,求函数gx)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面ABCD为菱形,QAD的中点.

,求证:平面PQB平面PAD

若平面APD平面ABCD,且M在线段PC上,试确定点M的位置,使二面角的大小为,并求出的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx+c.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;
(3)求证:a2﹣3b>0是f(x)有三个不同零点的必要而不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述:

①化简的结果为﹣

②函数y=在(﹣∞,﹣1)和(﹣1,+∞)上是减函数;

③函数y=log3x+x2﹣2在定义域内只有一个零点;

④定义域内任意两个变量x1,x2,都有,则f(x)在定义域内是增函数.

其中正确的结论序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点求证:

1BE平面DMF;

2平面BDE平面MNG

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为1,Sn为数列{an}的前n项和,Sn+1=qSn+1,其中q>0,n∈N+
(1)若a2 , a3 , a2+a3成等差数列,求数列{an}的通项公式;
(2)设双曲线x2 =1的离心率为en , 且e2=2,求e12+e22+…+en2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)已知函数(R).

1)当取什么值时,函数取得最大值,并求其最大值;

2)若为锐角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数f(x)的单调区间;

(2)已知, (其中是自然对数的底数), 求证:.

查看答案和解析>>

同步练习册答案