如图,⊥平面,=90°,,点在上,点E在BC上的射影为F,且.
(1)求证:;
(2)若二面角的大小为45°,求的值.
(1)注意运用,,,确定,
通过∽,得到; 证出;
(2).
解析试题分析:
解:(1)∵DC⊥平面ABC, ∴DC⊥BC
∵,∴EF∥CD 1′
又∵,,所以 , 2′
∴,,,∴,
∴∽,∴,即; 5′
∵,又,于是, 7′
(2)过F作于G点,连GC
由知,可得, 9′
所以,所以为F-AE-C的平面角,即=45° 11′
设AC=1,则,,则在RT△AFE中,
在RT△CFG中=45°,则GF=CF,即得到. 14′
(注:若用其他正确的方法请酌情给分)
考点:本题主要考查立体几何中的平行关系、垂直关系,距离与角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用向量则能简化证明过程。“几何法”的应用,要特别注意空间问题向平面问题转化。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD, , ,,
为的中点.
(1)求证:MC∥平面PAD;
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,.
(1)求证:FC∥平面AED;
(2)若,当二面角为直二面角时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图:四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=,E、F分别为线段PD和BC的中点.
(Ⅰ) 求证:CE∥平面PAF;
(Ⅱ) 在线段BC上是否存在一点G,使得平面PAG和平面PGC所成二面角的大小为60°?若存在,试确定G的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图, 是边长为的正方形,平面,,,与平面所成角为.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图,在□ABCD中,∠DAB=60°,AB=2,AD="4." 将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求证:AB⊥DE;
(2)求三棱锥E—ABD的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com