分析 由题知,当n≥2 时,有Sn+1=an+2-an+1,Sn-1+1=an+1-an,两式相减得an+2=2an+1,利用等比数列的通项公式与求和公式可得an,Sn,再利用数列的单调性即可得出.
解答 解:由题知,当n≥2 时,有Sn+1=an+2-an+1,Sn-1+1=an+1-an,
两式相减得an+2=2an+1,
又a1=1,a2=2,$\therefore$ a3=4,故an+1=2an 对任意n∈N* 成立,
∴${a_n}={2^{n-1}}$,${S_n}={2^n}-1$,
∴$λ>\frac{a_n}{S_n}=\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$恒成立只需$λ>\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$的最大值,
当n=1时,右式取得最大值1,∴λ>1.
故答案为:λ>1.
点评 本题考查了数列递推关系、等比数列的定义通项公式与求和公式、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 4π | B. | $\frac{200}{π}$ | C. | 2π | D. | $\frac{100}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ②④ | B. | ②③ | C. | ①④ | D. | ①③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com