精英家教网 > 高中数学 > 题目详情
已知
3
sinα-cosα=
4m-6
4-m
(0<α<π),求m的取值范围.
考点:两角和与差的正弦函数
专题:三角函数的求值,不等式的解法及应用
分析:先求-
1
2
sin(α-
π
6
)<1,即有sin(α-
π
6
)=
2m-3
4-m
,可得-
1
2
2m-3
4-m
<1,可解得
2
3
<m<
7
3
解答: 解:∵0<α<π,
∴-
π
6
<α-
π
6
6

∴-
1
2
sin(α-
π
6
)<1,
3
sinα-cosα=2sin(α-
π
6
)=
4m-6
4-m
,即有sin(α-
π
6
)=
2m-3
4-m

∴-
1
2
2m-3
4-m
<1,
∴可解得
2
3
<m<
7
3
点评:本题主要考察了两角和与差的正弦函数公式应用,不等式的解法,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,底面△ABC边长分别为AC=3,BC=4,AB=5,D为AB中点,AA1=4,BC1与B1C交于点O.
(1)求证:BC⊥AC1
(2)求证:AC1∥平面B1CD;
(3)求三棱锥C-B1DB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
ex
+c(e=2.71828…,c∈R),求f(x)的单调区间及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2+
y2
a
=1,直线l:kx-y-k=0,O为坐标原点.
(1)若该曲线的离心率为
3
2
,求该的曲线C的方程;
(2)当a=-1时,直线l过定点M且与曲线C相交于两点M,N,试问在曲线C上是否存在点Q使得
OM
+
ON
OQ
?若存在,求实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,则|
a
+
b
|等于(  )
A、
2
B、
15
2
2
C、
15
2
D、
10
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

若点M到x轴的距离是它到y轴距离的2倍,则点M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ex-k-lnx-k<0有解,则实数k的取值范围(  )
A、k>0B、0<k<1
C、k<0或k>1D、k>1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M=
a2+asinθ+1
a2+acosθ+1
(a,θ∈R,a≠0),则M的最大值与最小值分别为(  )
A、
1+
7
3
1-
7
3
B、
4+
7
3
4-
7
3
C、
9+4
2
7
9-4
2
7
D、
8+4
2
7
8-4
2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=4x-x4的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案