精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱的高为,其底面边长为.已知点分别是棱的中点,点是棱上靠近的三等分点.

求证:(1)平面

(2)平面.

【答案】(1)见解析;(2)见解析

【解析】

试题(1)根据平行四边形性质得,再根据线面平行判定定理得结论,(2)根据平几知识得,再根据线面垂直性质定理得,最后根据线面垂直判定定理得结论.

试题解析:(1)连结,正三棱柱中,,则四边形是平行四边形,因为点分别是棱的中点,所以,又正三棱柱,所以,所以四边形是平行四边形,所以,又平面平面,所以平面

(2)正三棱柱中,平面

平面,所以

中,的中点,所以,又平面

所以平面,又平面

所以

由题意,,所以

,所以相似,则

所以

,又平面

所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若函数在区间上无零点,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在三棱柱中,平面ABCEF分别是的中点,

1)求证:平面AEF

2)判断直线EF与平面的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的说法,正确的是( )

A.展开式中的二项式系数之和为2048

B.展开式中只有第6项的二项式系数最大

C.展开式中第6项和第7项的二项式系数最大

D.展开式中第6项的系数最小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C是圆周上不同于AB的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )

A. 4个B. 3个C. 2个D. 1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,共享单车已经悄然进入了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对车辆状况好评

对车辆状况不满意

合计

(1)能否在犯错误的概率不超过的前提下认为优惠活动好评与车辆状况好评之间有关系?

(2)为了回馈用户,公司通过向用户随机派送每张面额为元,元,元的 三种骑行券.用户每次使用扫码用车后,都可获得一张骑行券.用户骑行一次获得元券,获得元券的概率分别是,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为,求随机变量的分布列和数学期望.

参考数据:

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,点的极坐标为, 直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点, 为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,一动直线l过与圆相交于.两点,中点,l与直线m:相交于.

(1)求证:当l与m垂直时,l必过圆心

(2)当时,求直线l的方程;

(3)探索是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

同步练习册答案