精英家教网 > 高中数学 > 题目详情
如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.
(1)(-2,0)∪(0,2)(2)见解析
(1)设椭圆方程为 (ab>0),
由题意得
∴椭圆方程为=1.
由题意可得直线l的方程为yxm(m≠0),
A(x1y1),B(x2y2),
则点AB的坐标是方程组的两组解,
消去yx2+2mx+2m2-4=0.
Δ=4m2-4(2m2-4)>0,∴-2<m<2.
又∵m≠0,∴实数m的取值范围为(-2,0)∪(0,2).
(2)证明:由题意可设直线MAMB的斜率分别为k1k2
只需证明k1k2=0即可,
由(1)得x2+2mx+2m2-4=0,
x1x2=-2mx1x2=2m2-4,
k1k2
??==0, ?
∴直线MAMBx轴围成的三角形是等腰三角形.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,右焦点到直线的距离为
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为)的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴上方交双曲线于点,且.圆的方程是
(1)求双曲线的方程;
(2)过双曲线上任意一点作该双曲线两条渐近线的垂线,垂足分别为,求的值;
(3)过圆上任意一点作圆的切线交双曲线两点,中点为,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线与直线相交于A、B两点,其中A点的坐标是(1,2)。如果抛物线的焦点为F,那么等于(    )
A. 5         B.6            C.     D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,直线l:y=x+b与抛物线C:x2=4y相切于点A.

(1)求实数b的值;
(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为上的点 ,,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OAl的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线的交点个数是       

查看答案和解析>>

同步练习册答案