已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q.
(1)求证:
(2)若AQ=2AP,AB=,BP=2,求QD.
(1)证明过程详见解析;(2).
解析试题分析:本题主要考查同位角、弦切角、相似三角形、切线的性质、切割线定理等基础知识,考查学生的逻辑推理能力、分析问题解决问题的能力、转化能力.第一问,先利用同位角相等得到∠PAB=∠AQC,再利用弦切角相等,得到,同理,AQ为切线,则∠QAC=∠CBA,所有得到三角形相似,利用相似得性质得边的比例关系;第二问,由AB//CQ,利用平行线的性质得,得到QC和PC的长,利用切线的性质,得,,得到QD的值.
(1)因为AB∥CD,所以∠PAB=∠AQC, 又PQ与圆O相切于点A,所以∠PAB=∠ACB,
因为AQ为切线,所以∠QAC=∠CBA,所以△ACB∽△CQA,所以,
所以 5分
(2)因为AB∥CD,AQ=2AP,所以,由AB=,BP=2得,PC=6
为圆O的切线
又因为为圆O的切线 10分
考点:同位角、弦切角、相似三角形、切线的性质、切割线定理.
科目:高中数学 来源: 题型:解答题
如图,已知圆中两条弦AB与CD相交于点F,E是AB延长线上一点,且DF=CF=,AF∶FB∶BE=4∶2∶1,若CE与圆相切,求线段CE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,EP交圆于E、C两点,PD切圆于D,G为CE上一点且,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:AB为圆的直径;
(2)若AC=BD,求证:AB=ED.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com