精英家教网 > 高中数学 > 题目详情

【题目】一款手游,页面上有一系列的伪装,其中隐藏了4个宝藏.如果你在规定的时间内找到了这4个宝藏,将会弹出下一个页面,这个页面仍隐藏了2个宝藏,若能在规定的时间内找到这2个宝藏,那么闯关成功,否则闯关失败,结束游戏;如果你在规定的时间内找到了3个宝藏,仍会弹出下一个页面,但这个页面隐藏了4个宝藏,若能在规定的时间内找到这4个宝藏,那么闯关成功,否则闯关失败,结束游戏;其它情况下,不会弹出下一个页面,闯关失败,并结束游戏.

假定你找到任何一个宝藏的概率为,且能否找到其它宝藏相互独立..

1)求闯关成功的概率;

2)假定你付1Q币游戏才能开始,能进入下一个页面就能获得2Q币的奖励,闯关成功还能获得另外4Q币的奖励,闯关失败没有额外的奖励.求一局游戏结束,收益的Q币个数X的数学期望(收益=收入-支出).

【答案】1;(2EX=

【解析】

1)记闯关成功为事件A,事件A共分二类,找到4个宝藏并且闯关成功为事件B,找到3个宝藏并且闯关成功为事件C,那么A=B+C,利用互斥事件的概率的加法公式,即可求解

2)记一局游戏结束能收益XQ币,得到,求得相应的概率,得出随机变量的分布列,利用期望的公式,求得数学期望

1)由题意,记闯关成功为事件A,事件A共分二类,找到4个宝藏并且闯关成功为事件B,找到3个宝藏并且闯关成功为事件C,那么,

因为

所以

2)记一局游戏结束能收益XQ币,那么

由(1)知

X的概率分布列为:

X

1

1

5

P

所以EX=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学生对函数的性质进行研究,得出如下的结论:

函数在上单调递减,在上单调递增;

是函数图象的一个对称中心;

函数图象关于直线对称;

存在常数,使对一切实数x均成立,

其中正确命题的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新中国成立70周年以来,党中央国务院高度重视改善人民生活,始终把提高人民生活水平作为一切工作的出发点和落脚点城乡居民收入大幅增长,居民生活发生了翻天覆地的变化.下面是1949年及2015~2018年中国居民人均可支配收入(元)统计图.以下结论中不正确的是(

A.20l5-2018年中国居民人均可支配收入与年份成正相关

B.2018年中居民人均可支配收入超过了1949年的500

C.2015-2018年中国居民人均可支配收入平均超过了24000

D.2015-2018年中围居民人均可支配收入都超过了1949年的500

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,棱长为a的正方体,N是棱的中点;

1)求直线AN与平面所成角的大小;

2)求到平面ANC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱柱中,底面的边长为1为正方形的中心.

1)求证:平面

2)若异面直线所成的角的正弦值为,求直线到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发挥体育咋核心素养时代的独特育人价值,越来越多的中学生已将某些体育项目纳入到学生的必修课程,某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生抽取了100人进行调查.

一(1

一(2

一(3

一(4

一(5

一(6

一(7

一(8

一(9

一(10

市级比赛

获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上比

赛获奖人数

2

2

1

0

2

3

3

2

1

2

1)已知在被抽取的女生中有6名高一(1)班学生,其中3名对游泳有兴趣,现在从这6名学生中最忌抽取3人,求至少有2人对游泳有兴趣的概率;

2)该研究性学习小组在调查发现,对游泳有兴趣的学生中有部分曾在市级以上游泳比赛中获奖,如上表所示,若从高一(8)班和高一(9)班获奖学生中随机各抽取2人进行跟踪调查.记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

同步练习册答案