【题目】如图,四棱柱ABCD-中,地面ABCD为直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB,∠BA=60°,AB=A=2BC=2CD=2
(1)求证:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在线段D上是否存在点M,使得CM∥平面DA?若存在,求的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
频率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;
(2)在(1)的条件下,将等级系数为4的3件日用品记为,等级系数为5的2件日用品记为,现从,这5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,经过点F的直线与抛物线C交于不同的两点A,B,的最小值为4.
(1)求抛物线C的方程;
(2)已知P,Q是抛物线C上不同的两点,若直线恰好垂直平分线段PQ,求实数k 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线方程为,求的值;
(2)若的导函数存在两个不相等的零点,求实数的取值范围;
(3)当时,是否存在整数,使得关于的不等式恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某校中小学生人数和近视情况分别如图所示.为了解该校中小学生的近视形成原因,用分层抽样的方式从中抽取一个容量为50的样本进行调查.
(1)求样本中高中生、初中生及小学生的人数;
(2)从该校初中生和高中生中各随机抽取1名学生,用频率估计概率,求恰有1名学生近视的概率;
(3)假设高中生样本中恰有5名近视学生,从高中生样本中随机抽取2名学生,用表示2名学生中近视的人数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 | ||||||
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 | ||||||
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 | |
男生 | |||
女生 | |||
总计 | |||
参考公式:,其中.
参考数据:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数, ).
(1)求曲线的直角坐标方程和直线的普通方程;
(2)若曲线上的动点到直线的最大距离为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆()的左、右焦点分别是,,点为的上顶点,点在上,,且.
(1)求的方程;
(2)已知过原点的直线与椭圆交于,两点,垂直于的直线过且与椭圆交于,两点,若,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com