精英家教网 > 高中数学 > 题目详情

【题目】(1)椭圆C:+=1(a>b>0)与x轴交于A、B两点,点P是椭圆C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,求证:为定值b2﹣a2

(2)由(1)类比可得如下真命题:双曲线C:=1(a>0,b>0)与x轴交于A、B两点,点P是双曲线C上异于A、B的任意一点,直线PA、PB分别与y轴交于点M、N,则为定值.请写出这个定值(不要求给出解题过程).

【答案】(1);(2)

【解析】

(1)设点P(x0,y0),x0≠±a,依题意,得A(﹣a,0),B(a,0),从而得直线PA的方程,继而求得点M,N的纵坐标,得到yMyN=,把点P(x0,y0),代入椭圆方程可求得yMyN==b2,从而得=b2﹣a2

(2)类比(1)的结论,可得的值.

(1)证明:设点P(x0,y0),x0≠±a,

依题意,得A(﹣a,0),B(a,0),

直线PA的方程为y=(x+a)

令x=0,得yM=

同理得yN=

∴yMyN=

点P(x0,y0)是椭圆C上一点,

=1,=(a2),

∴yMyN==b2

=(a,yN),=(﹣a,yM),

=﹣a2+yMyN=b2﹣a2

(2)﹣(a2+b2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数),若有且仅有两个整数 ,使得,则的取值范围为

A. [ B. [ C. [ D. [

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左、右顶点分别为A,B,焦距为2 ,直线x=﹣a与y=b交于点D,且|BD|=3 ,过点B作直线l交直线x=﹣a于点M,交椭圆于另一点P.

(1)求椭圆的方程;
(2)证明: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(x﹣1),g(x)=ex
(1)当a=2时,求函数f(x)的最值;
(2)当a≠0时,过原点分别作曲线y=f(x)与y=g(x)的切线l1 , l2 , 已知两切线的斜率互为倒数,证明: <a<

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

气温/

18

13

10

-1

用电量/

24

34

38

64

由表中数据得线性回归方程中,≈-2,预测当气温为-4℃时,用电量为多少.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是(

A.k<6?
B.k<7?
C.k<8?
D.k<9?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行如图所示的程序框图,输出S的值为3,则判断框中应填入的条件是(

A.k<6?
B.k<7?
C.k<8?
D.k<9?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sin2x+1﹣
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[ ]时,若f(x)≥log2t恒成立,求t的取值范围.

查看答案和解析>>

同步练习册答案