精英家教网 > 高中数学 > 题目详情

【题目】设函数fx)=lg(﹣x2+5x6)的定义域为A,函数gxx∈(0m)的值域为B

1)当m2时,求AB

2)若xAxB的必要不充分条件,求实数m的取值范围.

【答案】(1)AB=(2)(2)(0]

【解析】

1)解一元二次不等式求得集合,当时,利用的单调性求得的值域,也即求得集合,由此求得两个集合的交集.

2)根据的单调性求得的值域,根据必要不充分条件的知识,判断出的真子集,由此列不等式组,解不等式组求得的取值范围.

1)由﹣x2+5x60,即x25x+60,解得2x3,即A=(23),

m2时,gxx∈(02)上为减函数,

gx,即B=(),

AB=(2);

2)∵gxx∈(0m)上为减函数,

gx,即B=(

xAxB的必要不充分条件,

的真子集,

,则

0m

故实数m的取值范围是(0]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

)设曲线处的切线为,到点的距离为,求的值.

)若对于任意实数恒成立,试确定的取值范围.

)当时,是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率,连接椭圆的四个顶点得到的菱形的面积为

求椭圆C的方程;

如图所示,该椭圆C的左、右焦点作两条平行的直线分别交椭圆于ABCD四个点,试求平行四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:

(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);

(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABCA1B1C1中,ACBCAA13ACBC,点M在线段AB上.

1)若MAB中点,证明AC1∥平面B1CM

2)当BM时,求直线C1A1与平面B1MC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在无穷数列中,是给定的正整数,

(Ⅰ)若,写出的值;

(Ⅱ)证明:数列中存在值为的项;

(Ⅲ)证明:若互质,则数列中必有无穷多项为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,已知是正三角形,平面平面的中点,在棱上,且.

1)求证:平面

2)若的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

时,求的极值;

的定义域为,判断是否存在极值若存在,试求a的取值范围;否则,请说明理由.

查看答案和解析>>

同步练习册答案