精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形BCDE的边长为a,已知AB= BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:
① AB与DE所成角的正切值是
②AB∥CE
③VBACE体积是 a3
④平面ABC⊥平面ADC.
其中正确的有 . (填写你认为正确的序号)

【答案】①③④
【解析】解:作出折叠后的几何体直观图如图所示: ∵AB= a,BE=a,∴AE= a.
∴AD= .∴AC=
在△ABC中,cos∠ABC= = =
∴sin∠ABC= =
∴tan∠ABC= =
∵BC∥DE,∴∠ABC是异面直线AB,DE所成的角,故①正确.
连结BD,CE,则CE⊥BD,
又AD⊥平面BCDE,CE平面BCDE,
∴CE⊥AD,又BD∩AD=D,BD平面ABD,AD平面ABD,
∴CE⊥平面ABD,又AB平面ABD,
∴CE⊥AB.故②错误.
三棱锥B﹣ACE的体积V= = = ,故③正确.
∵AD⊥平面BCDE,BC平面BCDE,
∴BC⊥AD,又BC⊥CD,
∴BC⊥平面ACD,∵BC平面ABC,
∴平面ABC⊥平面ACD.
所以答案是①③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前三项依次为a﹣2,a+2,a+8,则an=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|< )的最大值为2 ,最小值为﹣ ,周期为π,且图象过(0,﹣ ).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为F1、F2 , P为C的右支上一点,且|PF2|=|F1F2|,则 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣3x2+a(6﹣a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC、BD过原点O,若 . (i) 求 的最值;
(ii) 求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式ax﹣b<0的解集是(1,+∞),则关于x的不等式(ax+b)(x﹣3)>0的解集是(
A.(﹣∞,﹣1)∪(3,+∞)
B.(1,3)
C.(﹣1,3)
D.(﹣∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的离心率为 ,点 在椭圆C上.直线l过点(1,1),且与椭圆C交于A,B两点,线段AB的中点为M. (I)求椭圆C的方程;
(Ⅱ)点O为坐标原点,延长线段OM与椭圆C交于点P,四边形OAPB能否为平行四边形?若能,求出此时直线l的方程,若不能,说明理由.

查看答案和解析>>

同步练习册答案