精英家教网 > 高中数学 > 题目详情

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:

维修次数

8

9

10

11

12

频数

10

20

30

30

10

表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.

1)若,求的函数解析式;

2)若要求维修次数不大于的频率不小于0.8,求的最小值.

【答案】1.(2的最小值为11

【解析】

1)由题意可知,将原问题转化为分段函数求解析式的问题,即可确定函数的解析式;

2)由维修次数不大于10”的频率为维修次数不大于11”频率为,即可得出维修次数不大于的频率不小于0.8,求的最小值.

解:(1)根据题意得:

2)因为维修次数不大于10”的频率为

维修次数不大于11”频率为

所以若要求维修次数不大于的频率不小于0.8,则的最小值为11

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若三角形三边长都是整数且至少有一个内角为,则称该三角形为完美三角形.有关完美三角形有以下命题:

1)存在直角三角形是完美三角形

2)不存在面积是整数的完美三角形

3)周长为12完美三角形中面积最大为

4)若两个完美三角形有两边对应相等,且它们面积相等,则这两个完美三角形全等.

以上真命题有______.(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知从椭圆的一个焦点看两短轴端点所成视角为,且椭圆经过.

(1)求椭圆的方程;

(2)是否存在实数,使直线与椭圆有两个不同交点,且为坐标原点),若存在,求出的值.不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数的最小值为2,求的值;

2)当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,,侧棱底面,点的中点,作,交于点.

1)求证:平面

2)求证:

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中,是棱的中点.

1)证明:直线平面

2)若,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列四个结论:

① 函数的最小正周期是

② 函数在区间上是减函数;

③ 函数的图像关于点对称;

④ 函数的图像可由函数的图像向右平移个单位,再向下平移1个单位得到.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形,的中点,.

1)求证:平面

2)点在线段上,,试确定的值,使平面

3)若平面,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案