精英家教网 > 高中数学 > 题目详情
20.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是(  )
A.直角三角形B.锐角三角形
C.钝角三角形D.以上情况都有可能

分析 由题意可得,圆心到直线的距离$\frac{2c}{\sqrt{{a}^{2}+{b}^{2}}}$>2,即 c2>a2+b2,故△ABC是钝角三角形.

解答 解:∵直线ax+by+2c=0与圆x2+y2=4相离,
∴圆心到直线的距离$\frac{2c}{\sqrt{{a}^{2}+{b}^{2}}}$>2,即 c2>a2+b2
故△ABC是钝角三角形,
故选C.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{10π}{3}$)的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.过椭圆$\frac{x^2}{m}+\frac{y^2}{m-4}=1$(m>4)右焦点F的圆与圆O:x2+y2=1外切,则该圆直径FQ的端点Q的轨迹是(  )
A.一条射线B.两条射线C.双曲线的一支D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知抛物线y2=4$\sqrt{3}$x的准线与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)相交于A,B两点,双曲线的一条渐近线方程是y=$\sqrt{2}$x,点F是抛物线的焦点,且△FAB是正三角形,则双曲线的标准方程是${x^2}-\frac{y^2}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(sinC-sinA,sinC-sinB)与$\overrightarrow{n}$=(b+c,a)共线.
(I)求角B的大小;
(II)若b=2$\sqrt{3}$,c=$\sqrt{6}+\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-ax-1-$\frac{{x}^{2}}{2}$,x∈R
(1)当a=2,求f(x)的图象在点(0,f(0))处的切线方程;
(2)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我们把满足:${x_{n+1}}={x_n}-\frac{{f({x_n})}}{{f'({x_n})}}$的数列{xn}叫做牛顿数列.已知函数f(x)=x2-1,数列{xn}为牛顿数列,设${a_n}=ln\frac{{{x_n}-1}}{{{x_n}+1}}$,已知a1=2,则a3=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f'(x)是定义在(0,π)上的函数f(x)的导函数,有f(x)sinx-f'(x)cosx<0,$a=\frac{1}{2}f(\frac{π}{3})$,b=0,$c=-\frac{{\sqrt{3}}}{2}f(\frac{5π}{6})$,则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆O:x2+y2=1和抛物线E:y=x2-2,O为坐标原点.
(1)已知直线l和圆O相切,与抛物线E交于M,N两点,且满足OM⊥ON,求直线l的方程;
(2)过抛物线E上一点P(x0,y0)作两直线PQ,PR和圆O相切,且分别交抛物线E于Q,R两点,若直线QR的斜率为$-\sqrt{3}$,求点P的坐标.

查看答案和解析>>

同步练习册答案