分析 (1)推导出$\frac{{{a_{n+1}}}}{a_n}=\frac{{1+\sqrt{5}}}{2}$(为常数),由此能证明数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是公比为$\frac{{1+\sqrt{5}}}{2}$的等比数列.并能求出数列{an}的通项公式.
(2)推导出$\frac{1}{{a}_{n}+2016}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,从而2-$\frac{1}{{a}_{2017}}$<$\frac{1}{{a}_{2016}}$+$\frac{1}{{a}_{2016}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{n}{{a}_{2016}}$.由此能求出结果.
解答 证明:(1)∵$λ=\frac{1}{{{a_{n+1}}}}$,∴${a_{n+1}}={a_n}+\frac{{{a_n}^2}}{{{a_{n+1}}}}⇒a_{n+1}^2-{a_{n+1}}{a_n}+a_n^2=0$,
∴${(\frac{{{a_{n+1}}}}{a_n})^2}-(\frac{{{a_{n+1}}}}{a_n})+1=0⇒\frac{{{a_{n+1}}}}{a_n}=\frac{{1±\sqrt{5}}}{2}$,
∵an>0,∴$\frac{{{a_{n+1}}}}{a_n}=\frac{{1+\sqrt{5}}}{2}$(为常数),
∴数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$是公比为$\frac{{1+\sqrt{5}}}{2}$的等比数列.
∵${a_1}=\frac{1}{2}$,∴${a_n}=\frac{1}{2}{(\frac{{1+\sqrt{5}}}{2})^{n-1}}$.…(7分)
(2)解:∵an+1=an+can2,c=$\frac{1}{2016}$,∴an+1>an>0.
∴$\frac{1}{{a}_{n+1}}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n}+2016}$,即$\frac{1}{{a}_{n}+2016}=\frac{1}{{a}_{n}}-\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{1}+2016}$+$\frac{1}{{a}_{2}+2016}$+…+$\frac{1}{{a}_{n}+2016}$=($\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}$)+($\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$)+…+($\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$)
=2-$\frac{1}{{a}_{n+1}}$.
∴2-$\frac{1}{{a}_{2017}}$<$\frac{1}{{a}_{2016}}$+$\frac{1}{{a}_{2016}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{n}{{a}_{2016}}$.
当n=2016时,2-$\frac{1}{{a}_{2017}}$<1,得a2017<1.
当n=2017时,2-$\frac{1}{{a}_{2018}}$>$\frac{1}{2017}$+$\frac{1}{2017}$+…+$\frac{1}{2017}$=1,得a2018>1.
因此存在n∈N*,使得an>1. …(15分)
点评 本题考查等比数列的证明,考查数列的通项公式的求法,考查满足条件的实数的最小值的求法,综合性强,难度大,对数学思维能力的要求较高.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{5\sqrt{42}}}{2}$ | B. | $5\sqrt{42}$ | C. | $5\sqrt{3}$ | D. | $5\sqrt{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\frac{33}{2}$ | D. | $\frac{33}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com