精英家教网 > 高中数学 > 题目详情

【题目】如图,某景区是一个以为圆心,半径为的圆形区域,道路角,且均和景区边界相切,现要修一条与景区相切的观光木栈道,点分别在上,修建的木栈道与道路围成的三角地块.

1)求修建的木栈道与道路围成的三角地块面积的最小值;

2)若景区中心与木栈道段连线的.

①将木栈道的长度表示为的函数,并指定定义域;

②求出木栈道的长度最小值.

【答案】1平方千米;(2)①;②.

【解析】

1)利用,结合余弦定理,利用基本不等式,求得的最小值,即可求得结果;

2)①根据角度关系,结合三角函数的应用,即可容易表示;

②由①中所求,结合均值不等式,即可容易求得最小值.

1)设三角地带面积为

三角形内切圆面积,又因为

所以

,①

中,由余弦定理得

,②

由①和②得

修建的木栈道与道路围成的三角地带面积的最小值为平方千米.

2)①设直线和圆相切点,则

当且仅当时等号成立,

故木栈道的长度最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左、右焦点,为坐标原点,点在椭圆上,线段轴的交点满足

(Ⅰ)求椭圆的标准方程;

(Ⅱ)圆是以为直径的圆,一直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面,直线平面,且

1)求证:DA平面

2)若平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)写出曲线的极坐标方程,并求出曲线公共弦所在直线的极坐标方程;

2)若射线与曲线交于两点,与曲线交于点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆过点分别为椭圆的右下顶点,且.

1)求椭圆的方程;

2)设点在椭圆内,满足直线的斜率乘积为,且直线分别交椭圆于点.

①若关于轴对称,求直线的斜率;

②若的面积分别为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019926日,携程网发布《2019国庆假期旅游出行趋势预测报告》,2018年国庆假日期间,西安共接待游客1692.56万人次,今年国庆有望超过2000万人次,成为西部省份中接待游客量最多的城市.旅游公司规定:若公司某位导游接待旅客,旅游年总收人不低于40(单位:万元),则称该导游为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙两家旅游公司各有导游40名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:

1)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?

2)求甲公司一年内导游旅游总收入的中位数,乙公司一年内导游旅游总收入的平均数.(同一组中的数据用该组区间的中点值为代表).(精确到0.01)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若恒成立,,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线上的任意一点到直线的距离比点到点的距离小1.

1)求动点的轨迹的方程;

2)若点是圆上一动点,过点作曲线的两条切线,切点分别为,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司的送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:

甲公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

20

40

20

10

10

乙公司送餐员送餐单数频数表

送餐单数

38

39

40

41

42

天数

10

20

20

40

10

(1)现从甲公司记录的这100天中随机抽取两天,求这两天送餐单数都大于40的概率;

(2)若将频率视为概率,回答以下问题:

(i)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;

(ii)小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

同步练习册答案