精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足
a
=(2,0),|
b
|=1,
a
b
的夹角为120°,求|
a
+2
b
|.
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的数量积的定义,可得向量a,b的数量积,再由向量的平方即为模的平方,计算即可得到.
解答: 解:由于
a
=(2,0),
则|
a
|=2,
又|
b
|=1,
a
b
的夹角为120°,
a
b
=|
a
|•|
b
|•cos120°=2×1×(-
1
2
)
=-1,
则有|
a
+2
b
|=
a
2
+4
b
2
+4
a
b
=
4+4-4
=2.
点评:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知①对于任意的x∈R都有f(x+
3
)=f(x);
②对于任意的x∈R,都有f(
π
6
-x)=f(
π
6
+x).
则其解析式可以是f(x)=
 
(写出一个满足条件的解析式即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,曲线Γ由曲线C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲线C2
x2
a2
-
y2
b2
=1(y>0)
组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点;
(1)若F2(2,0),F3(-6,0),求曲线Γ的方程;
(2)对于(1)中的曲线Γ,若过点F4作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求三角形ABF1的面积;
(3)如图,若直线l(不一定过F4)平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

空间几何体的三视图如图所示,则该几何体的表面积和体积分别为(  )
A、6+2
5
,2
B、8+2
3
,1
C、8+2
5
,2
D、6+2
3
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)为二次函数,且f(1)=1,f(x+1)-f(x)=-4x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x)-x-a,若函数g(x)在实数R上没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,B是线段AC上一点,经测量,点D位于点A的北偏东30°方向8km,位于点B的正北方向,位于点C的北偏西75°方向上,并且AB=5km.
(1)求点B与D之间的距离(精确到0.1km);
(2)求点C与D之间的距离(精确到0.1km).
(参考数据:
3
=1.73,sin53°=0.80,cos38°=0.79)

查看答案和解析>>

科目:高中数学 来源: 题型:

若|x|≤
π
4
,则函数f(x)=cos2x+sinx的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图2所示,已知130-140分数段的人数为80,90-100分数段的人数为a,则图1所示程序框图的运算结果为(  )
A、700!B、710!
C、720!D、730!

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为70颗,以此实验数据为依据,可以估计出椭圆的面积大约为(  )
A、6B、12C、18D、20

查看答案和解析>>

同步练习册答案