精英家教网 > 高中数学 > 题目详情

【题目】已知圆为圆上任一点.

(1)的最大值与最小值;

2的最大值与最小值.

【答案】(1)最大值是,最小值是;(2)最大值是,最小值是.

【解析】

(2)试题分析:(1)是圆上的点与点连线的斜率,最大、最小值分别是过点的圆的两条切线的斜率.设切线的斜率为,利用圆心到直线的距离等于半径,求出斜率(2)令,则,转化为线性规划问题求解,平移直线,当直线和圆有公共点时,的范围即可确定,且最值在直线与圆相切时取得.利用点到直线的距离公式,求得的取值范围.

试题解析:

(1)显然可以看作是点与点连线的斜率.,如图所示,则其最大、最小值分别是过点的圆的两条切线的斜率.

对上式整理得

.

的最大值是,最小值是.

(3),则可视为一组平行线,当直线和圆有公共点时,的范围即可确定,且最值在直线与圆相切时取得.

依题意,得,取得

的最大值是,最小值是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,,过椭圆的右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点, 过点分别作直线交椭圆两点, 设这两条直线的斜率分别为,且,证明: 直线 过定点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1当x[1,4]时,求函数的值域;

2如果对任意的x[1,4],不等式恒成立,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中a∈R.

)当a=1时,判断fx)的单调性;

)若gx)在其定义域内为增函数,求正实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明对本班同学做调查,提出问题你考试作弊吗?这样的问法______(填合理不合理),理由是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为,记∠COA=α

的值;

求cos∠COB的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数的导函数为,且满足,当时有恒成立,若非负实数满足,则的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁矿石A和B的含铁率为,冶炼每万吨铁矿石CO2的排放量b及每万吨铁矿石

的价格c如下表:

b(万吨)

(百万元)

A

50%

1

3

B

70%

0.5

6

某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨),则购买铁矿石的最少费用为________ (百万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某企业的两座建筑物ABCD的高度分别为20m和40m,其底部BD之间距离为20m.为响应创建文明城市号召,进行亮化改造,现欲在建筑物AB的顶部A处安装一投影设备,投影到建筑物CD上形成投影幕墙,既达到亮化目的又可以进行广告宣传.已知投影设备的投影张角∠EAF,投影幕墙的高度EF越小,投影的图像越清晰.设投影光线的上边沿AE与水平线AG所成角为α,幕墙的高度EFy(m).

(1)求y关于α的函数关系式,并求出定义域;

(2)当投影的图像最清晰时,求幕墙EF的高度.

查看答案和解析>>

同步练习册答案