精英家教网 > 高中数学 > 题目详情
若α、β是两个不同的平面,m、n是两条不同直线,则下列命题不正确的是
A.α∥β,m⊥α,则m⊥β
B.m∥n,m⊥α,则n⊥α
C. n∥α,n⊥β,则α⊥β
D.αβ=m,n与α、β所成的角相等,则m⊥n
D

试题分析:对于选项A,由于α∥β,m⊥α,如果一条直线垂直于平行平面中的一个,必定垂直与另一个平面,那恶么显然成立。
对于选项B,两条平行线中一条垂直该平面,则另一条也垂直于该平面,成立。
对于选项C,一条直线平行与一个平面,还垂直于另一个平面,在这两个平面必行垂直也成立。
对于选项D,由于与两个相交平面所成的角相等的直线,不一定与其交线垂直,因此错误,故选D.
点评:解决该试题的关键是对于空间中的线面垂直和面面垂直关系的判定定理和性质定理的熟练运用。同时能借助于现实中的长方体特殊模型来加以判定,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在三棱锥中, 两两垂直, 且.设是底面内一点,定义,其中分别是三棱锥M-PAB、 三棱锥M-PBC、三棱锥M-PCA的体积.若,且恒成立,则正实数的最小值为_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果一条直线和平面内的一条直线平行,那么直线和平面的关系是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示的三棱锥A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2,∠BAC=120°,若点P为△ABC内的动点满足直线DP与平面ABC所成角的正切值为2,则点P在△ABC内所成的轨迹的长度为              

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
四棱锥,面⊥面.侧面是以为直角顶点的等腰直角三角形,底面为直角梯形,,,上一点,且.

(Ⅰ)求证
(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中命题正确的是              .(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,菱形ABCD与矩形BDEF所在平面互相垂直,

(1)求证:FC∥平面AED
(2)若,当二面角为直二面角时,求k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

将锐角为且边长是2的菱形,沿它的对角线折成60°的二面角,则(      )
①异面直线所成角的大小是       .
②点到平面的距离是       .
A.90°,B.90°,C.60°,D.60°,2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理)如图,将∠B=,边长为1的菱形ABCD沿对角线AC折成大小等于θ的二面角BACD,若θ∈[,],MN分别为ACBD的中点,则下面的四种说法:

ACMN
DM与平面ABC所成的角是θ
③线段MN的最大值是,最小值是;
④当θ=时,BCAD所成的角等于.
其中正确的说法有    (填上所有正确说法的序号).

查看答案和解析>>

同步练习册答案