精英家教网 > 高中数学 > 题目详情
是平面内的一条定直线,是平面外的一个定点,动直线经过点且与角,则直线与平面的交点的轨迹是
A.圆B.椭圆C.双曲线D.抛物线
C

试题分析:动直线的轨迹是以点为顶点、以平行于的直线为轴的两个圆锥面,而点的轨迹就是这两个圆锥面与平面的交线.那么可知为双曲线,故选C.
点评:要判断空间中直线与平面的位置关系,有良好的空间想像能力,熟练掌握空间中直线与直线、直线与平面、平面与平面平行或垂直的判定定理及性质定理,并能利用教室、三棱锥、长方体等实例举出满足条件的例子或反例是解决问题的重要条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是△SBC的垂心.

(1)求证:BC⊥SA
(2)若S在底面ABC内的射影为O,证明:O为底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱锥S—ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱中,若AB=2,则点A到平面的距离为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,正方体的棱长为1,O是平面的中心,则O到平面的距离是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不重合的直线,是三个两两不重合的平面,给出下列四个命题:
①若m,m,则; ②若
③若m//,n //,m//n 则// ④若m,m//,则
其中真命题是(   )
A.①和②B.①和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在边长为2的正方体中,EBC的中点,F的中点

(1)求证:CF∥平面
(2)求二面角的平面角的余弦值.

查看答案和解析>>

同步练习册答案