精英家教网 > 高中数学 > 题目详情
7.设不等式x2+ax+b≤0的解集为A=[m,n],不等式$\frac{{({x+2})({x+1})}}{x-1}>0$的解集为B,若A∪B=(-2,+∞),A∩B=(1,3],则m+n=2.

分析 求出A=[m,n],B={x|-2<x<-1或x>1},再由A∪B=(-2,+∞),A∩B=(1,3],求出m,n,由此能求出m+n.

解答 解:∵等式x2+ax+b≤0的解集为A=[m,n],
不等式$\frac{{({x+2})({x+1})}}{x-1}>0$的解集为B,
∴B={x|-2<x<-1或x>1},
∵A∪B=(-2,+∞),A∩B=(1,3],
∴m=-1,n=3,
∴m+n=-1+3=2.
故答案为:2.

点评 本题考查代数式和的求法,是基础题,解题时要认真审题,注意交集、并集、不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.幂函数f(x)的图象经过点$({2,\frac{1}{8}})$,则函数f(x)的解析式为f(x)=x-3(x≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数$f(x)=\left\{\begin{array}{l}{x^2}-ax+3\;\;\;\;\;\;x<2\\-6+{2^x}\;\;\;\;\;\;\;\;\;\;x≥2\end{array}\right.$的值域为[-2,+∞),则实数a的取值范围为[-2$\sqrt{5}$,$\frac{9}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,若两点P、Q满足条件:①P、Q都在函数y=f(x)的图象上;②P、Q两点关于直线y=x对称,则称点对{P,Q}是函数y=f(x)的一对“和谐点对”(注:点对{P,Q}与{Q,P}看做同一对“和谐点对”).函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+3x+2(x≤0)}\\{lo{g}_{2}x(x>0)}\end{array}\right.$,则此函数的“和谐点对”有2对.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|x-a|+2x,其中a∈R.
(1)若函数f(x)在R上是增函数,求a的取值范围.
(2)若存在a∈[-2,4],使得关于x的方程f(x)=bf(a)有三个不相同的实数解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=sin(-\frac{x}{2}-\frac{π}{6})$的单调递增区间是(  )
A.[2kπ+$\frac{2}{3}$π,2kπ+$\frac{8}{3}$π](k∈Z)B.[4kπ+$\frac{2}{3}$π,4kπ+$\frac{8}{3}$π](k∈Z)
C.[2kπ-$\frac{4}{3}$π,2kπ+$\frac{2}{3}$π](k∈Z)D.[4kπ-$\frac{4}{3}$π,4kπ+$\frac{2}{3}$π](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知水平放置的△A BC是按“斜二测画法”得到如图所示的直观图,其中 B'O'=C'O'=1,${A}'{O}'=\frac{{\sqrt{3}}}{2}$,那么对于原△ABC则有(  )
A.AB=BCB.AB=BC,且AB⊥BCC.AB⊥BCD.AB=AC,且AB⊥AC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是cm.已知每出售1ml的饮料,制造商可获利0.2分,且制造商能制做的瓶子的最大半径为6cm.
问题:瓶子半径多大时,能使每瓶饮料的利润最大?瓶子半径多大时,每瓶饮料的利润最小?$({V_球}=\frac{4}{3}π{r^3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.给出下列三个命题:
①函数y=tanx在第一象限是增函数
②奇函数的图象一定过原点
③函数y=sin2x+cos2x的最小正周期为π
④函数y=x+$\frac{2}{x}$的最小值为2$\sqrt{2}$
其中 假命题的序号是①②④.

查看答案和解析>>

同步练习册答案