精英家教网 > 高中数学 > 题目详情

【题目】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.

(1)求梯形铁片的面积关于的函数关系式;

2)试确定的值,使得梯形铁片的面积最大,并求出最大值.

【答案】(1),其中.(2)时,

【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得最后根据梯形面积公式得 ,交代定义域.(2)利用导数求函数最值:先求导数 ,再求导函数零点,列表分析函数单调性变化规律,确定函数最值

试题解析:(1)连接,根据对称性可得

所以

所以 ,其中

2)记

).

时, ,当时,

所以上单调递增,在上单调递减,

所以,即时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】动点A(x , y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是( ),则当0≤t≤12时,动点A的纵坐标y关于 t(单位:秒)的函数的单调递增区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,底面ABCD为直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD与底面ABCD成30°角,E是PD的中点.
(1)点H在AC上且EH⊥AC,求 的坐标;
(2)求AE与平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角ABC中,角A、B、C所对的边分别为a,b,c,b=4,c=6,且asinB=2
(1)求角A的大小;
(2)若D为BC的中点,求线段AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2xcos2x2sinx cosxxR).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a,b,c成等比数列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船以每小时15 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里,当甲船航行40分钟到达A2处时,乙船航行到甲船的南偏西45°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和a件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出a件正品时检测结束,已知前两次检测都没有检测出次品的概率为 .

(1) 求实数a的值;

(2) 若每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我海监船在岛海域例行维权巡航,某时刻航行至处,此时测得其东北方向与它相距海里的处有一外国船只,且岛位于海监船正东海里处。

(Ⅰ)求此时该外国船只与岛的距离;

(Ⅱ)观测中发现,此外国船只正以每小时海里的速度沿正南方向航行。为了将该船拦截在离海里处,不让其进入海里内的海域,试确定海监船的航向,并求其速度的最小值.

(参考数据:

查看答案和解析>>

同步练习册答案