精英家教网 > 高中数学 > 题目详情
对某400件元件进行寿命追踪调查情况频率分布如下:
寿命(h)频率
[500,600)0.10
[600,700)0.15
[700,800)0.40
[800,900)0.20
[900,1000]0.15
合计1
(1)列出寿命与频数对应表;
(2)估计元件寿命在[500,800)内的频率;
(3)估计元件寿命在700h以上的频率.
考点:频率分布表
专题:概率与统计
分析:根据题意,求出各小组元件寿命对应的频数是多少,估计元件寿命在[500,800)内的频率和寿命在700h以上的频率是多少.
解答: 解:(1)1)列出寿命与频数对应表如下;
寿命(h)频数
[500,600)40
[600,700)60
[700,800)160
[800,900)80
[900,1000]60
合计400
(2)估计元件寿命在[500,800)内的频率为0.10+0.15+0.40=0.65;
(3)估计元件寿命在700h以上的频率为0.40+0.20+0.15=0.75.
点评:本题考查了频率与频数的应用问题,解题时应根据频率=
频数
样本容量
的关系进行解答,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三内角A,B,C所对边的长依次为a,b,c,若cosA=
3
4
,cosC=
1
8

(Ⅰ)求cos B的值;    
(Ⅱ)若|
AC
+
BC
|=
46
,求BC边上中线的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)=(  )
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(
1
2
)=1
若对于x1、x2∈(0,+∞),都有 
x1-x2
f(x1)-f(x2)
<0.
(1)求f(1),f(2);
(2)解不等式f(-x)+f(2-x)≥-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-
1
4
,an=1-
1
an-1
(n>1),则a2014的值为(  )
A、-
1
4
B、5
C、
4
5
D、以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,f(-2)=2013,对任意x∈R都有f′(x)<2x成立,则不等式f(x)<x2+2009的解集是(  )
A、(-2,2)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的个数(  )
①f(x)=|x|与g(x)=
x2
是同一函数.
②函数y=x2-6x+10在区间上(2,4)上先递减后递增;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=-x2+2在[-1,3]上的最大值为1,最小值为-7.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题A:函数f(x)=x2-4mx+4m2+2在区间[-1,3]上的最小值为2;命题B:g(x)=
2x-m,x≥m
m,x<m
且g(x)>1对任意x∈R恒成立;命题C:{x|m≤x≤2m+1}⊆{x|x2-4≥0}.
(1)若A、B、C中至少有一个为真命题,试求实数m的取值范围;
(2)若A、B、C中恰有一个为假命题,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案