【题目】在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6组进行统计,并绘制出如图所示的柱形图.
图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.
每周运动的总时长不少于14小时为运动较多.
(1)根据题意,完成下面的2×2列联表:
有肠胃病 | 无肠胃病 | 总计 | |
运动较多 | |||
运动较少 | |||
总计 |
(2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?
附:K2(n=a+b+c+d)
P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】(1)若,是不等式成立的必要不充分条件,求实数的取值范围;
(2)已知集合,.若“”是“”的充分条件,求实数的取值范围;
(3)已知命题“,”的否定为假命题,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为,焦距为2,抛物线的准线经过的左焦点.
(1)求与的方程;
(2)直线经过的上顶点且与交于,两点,直线,与分别交于点(异于点),(异于点),证明:直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在地正西方向的处和正东方向的处各一条正北方向的公路和,现计划在和路边各修建一个物流中心和.
(1)若在处看,的视角,在处看测得,求,;
(2)为缓解交通压力,决定修建两条互相垂直的公路和,设,公路的每千米建设成本为万元,公路的每千米建设成本为万元.为节省建设成本,试确定,的位置,使公路的总建设成本最小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阿波罗尼斯(约公元前年)证明过这样一个命题:平面内到两定点距离之比为常数的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.若平面内两定点、间的距离为,动点满足,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆两焦点分别为、,且离心率;
(1)设E是直线与椭圆的一个交点,求取最小值时椭圆的方程;
(2)已知,是否存在斜率为k的直线l与(1)中的椭圆交于不同的两点A、B,使得点N在线段AB的垂直平分线上,若存在,求出直线l在y轴上截距的范围;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(ω>0)的最小正周期为π.
(Ⅰ)求ω的值和f(x)的单调递增区间;
(Ⅱ)若关于x的方程f(x)﹣m=0在区间[0,]上有两个实数解,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com