精英家教网 > 高中数学 > 题目详情

【题目】【2015高考湖北如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.

(1)圆C的标准方程为________.

(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:

;②=2;

=2.

其中正确结论的序号是________(写出所有正确结论的序号).

答案(1)(x-1)2+(y-)2=2 (2)①②③

解析(1)取AB的中点D,连接CD,则CD⊥AB.

由题意|AD|=|CD|=1,

故|AC|=,即圆C的半径为.

又因为圆C与x轴相切于点T(1,0),所以圆心C的坐标为(1,),故圆C的标准方程为(x-1)2+(y-)2=2.

(2)在(x-1)2+(y-)2=2中,令x=0,得y=±1,

故A(0,-1),B(0,+1).设M(x1,y1),N(x2,y2),

当直线MN斜率不存在时,令M(0,-1),N(0,1),

-1,-1.

.

当直线MN斜率存在时,设直线MN的方程为y=kx+-1,由

得(1+k2)x2+2(-1)kx+2(1-)=0,

则x1+x2,x1x2

kBM+kNB

=-+2k

=-+2k=0,

所以kBM=-kNB,所以∠MBA=∠NBA,BA是∠MBN的平分线.

由内角平分线定理得,即.

恒成立.

当k=0时,可求得-1,

-1为定值.

所以-(-1)=2,

-1=2.

故①②③都正确.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是(
A.[﹣1,1]
B.[﹣ ]
C.[﹣ ,1]
D.[﹣1, ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈(0, ),β∈(0,π),且tan(α﹣β)= ,tanβ=﹣
(1)求tanα;
(2)求2α﹣β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如下(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).

(Ⅰ)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?

(Ⅱ)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.

参考公式: ; 附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的极值;

(Ⅱ)若函数的图像与函数的图像在区间上有公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数

(Ⅰ)判断是否为函数的极值点,并说明理由;

(Ⅱ)若在区间上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案