·ÖÎö £¨1£©ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=4£¬¼´£º$\frac{{x}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{4{b}^{2}}$=1£®²»·ÁÉèc2=a2-b2£¬ÔòF2£¨2c£¬0£©£®ÓÉ$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0£¬¿ÉµÃ$\overrightarrow{A{F}_{2}}$¡Í$\overrightarrow{{F}_{1}{F}_{2}}$£®2c=2£¬$\frac{£¨2b£©^{2}}{2a}$=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬2b4=a2=b2+1£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©£¨i£©ÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=2 ¼´£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£®ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®ÉèP£¨x0£¬y0£©£¬ÓÉPÔÚÍÖÔ²C2ÉÏ£¬¿ÉµÃy02=$\frac{1}{2}$£¨4-x02£©£®ÔÙÀûÓÃбÂʼÆË㹫ʽ¼´¿ÉÖ¤Ã÷k1k2Ϊ¶¨Öµ£®
£¨ii£©ÉèÖ±ÏßPF1µÄ·½³ÌΪ£ºy=k1£¨x+2£©Ö±ÏßPF2µÄ·½³ÌΪ£ºy=k2£¨x-2£©£¬ÓëÍÖÔ²·½³ÌÁªÁ¢ÏûÔªÕûÀíµÃ£º£¨2k12+1£©x2+8k1x+8k12-8=0£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬ÀûÓøùÓëϵÊýµÄ¹Øϵ¿ÉµÃ|EF|=$\sqrt{1+{k}_{1}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$£¬|MN|£®ÀûÓã¨i£©µÄ½áÂÛ´úÈë|EF|?|MN|£¬»¯¼ò¼´¿ÉÖ¤Ã÷£®
½â´ð ½â£º£¨1£©½â£ºÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=4£¬¼´£º$\frac{{x}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{4{b}^{2}}$=1£®
²»·ÁÉèc2=a2-b2 ÔòF2£¨2c£¬0£©£®
¡ß$\overrightarrow{A{F}_{2}}$?$\overrightarrow{{F}_{1}{F}_{2}}$=0£¬¡à$\overrightarrow{A{F}_{2}}$¡Í$\overrightarrow{{F}_{1}{F}_{2}}$£®
ÓÚÊÇ2c=2£¬$\frac{£¨2b£©^{2}}{2a}$=$\frac{2{b}^{2}}{a}$=$\sqrt{2}$£¬2b4=a2=b2+1£¬
¡à2b4-b2-1=0£¬
£¨2b2+1£©£¨b2-1£©=0£¬
¡àb2=1£¬a2=2£®
¡àÍÖÔ²CnµÄ·½³ÌΪ£º$\frac{x2}{2}$+y2=n£®
¡àe2=$\frac{2{n}^{2}-{n}^{2}}{2{n}^{2}}$=$\frac{1}{2}$£¬¡àe=$\frac{\sqrt{2}}{2}$£®
ÍÖÔ²C1µÄ·½³ÌΪ£º$\frac{x2}{2}$+y2=1£®
£¨2£©£¨i£©Ö¤Ã÷£ºÍÖÔ²C2µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=2 ¼´£º$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£®
ÍÖÔ²C4µÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=4 ¼´£º$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}$=1£®
¡àF1£¨-2£¬0£©£¬F2£¨2£¬0£©£¬ÉèP£¨x0£¬y0£©£¬
¡ßPÔÚÍÖÔ²C2ÉÏ£¬¡à$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{2}$=1£¬¼´y02=$\frac{1}{2}$£¨4-x02£©£®
¡àk1k2=$\frac{{y}_{0}}{{x}_{0}+2}$•$\frac{{y}_{0}}{{x}_{0}-2}$=$\frac{{y}_{0}^{2}}{{x}_{0}^{2}-4}$=$\frac{\frac{1}{2}£¨4-{x}_{0}^{2}£©}{{x}_{0}^{2}-4}$=-$\frac{1}{2}$£®
£¨ii£©ÉèÖ±ÏßPF1µÄ·½³ÌΪ£ºy=k1£¨x+2£©Ö±ÏßPF2µÄ·½³ÌΪ£ºy=k2£¨x-2£©£¬
ÁªÁ¢·½³Ì×飺$\left\{\begin{array}{l}{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\\{y={k}_{1}£¨x+2£©}\end{array}\right.$ ÏûÔªÕûÀíµÃ£º£¨2k12+1£©x2+8k1x+8k12-8=0¡¢Ù
ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬Ôòx1£¬x2ÊÇ·½³Ì¢ÙµÄÁ½¸ö½â£¬ÓÉΤ´ï¶¨ÀíµÃ£º
x1+x2=-$\frac{8{k}_{1}}{2{k}_{1}^{2}+1}$£¬x1x2=$\frac{8{k}_{1}^{2}-8}{2{k}_{1}^{2}+1}$£®
¡à|EF|=$\sqrt{1+{k}_{1}^{2}}$$•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\frac{4\sqrt{2}£¨1+{k}_{1}^{2}£©}{2{k}_{1}^{2}+1}$£®
ͬÀí£º|MN|=$\frac{4\sqrt{2}£¨1+{k}_{2}^{2}£©}{2{k}_{2}^{2}+1}$£®
¡à|EF|?|MN|=$\frac{4\sqrt{2}£¨1+{k}_{1}^{2}£©}{2{k}_{1}^{2}+1}$•$\frac{4\sqrt{2}£¨1+{k}_{2}^{2}£©}{2{k}_{2}^{2}+1}$=32¡Á$\frac{{k}_{1}^{2}{k}_{2}^{2}+{k}_{1}^{2}+{k}_{2}^{2}+1}{4{k}_{1}^{2}{k}_{2}^{2}+2{k}_{1}^{2}+2{k}_{2}^{2}+1}$=32¡Á$\frac{£¨-\frac{1}{2}£©^{2}+{k}_{1}^{2}+{k}_{2}^{2}+1}{4¡Á£¨-\frac{1}{2}£©^{2}+2{k}_{1}^{2}+2{k}_{2}^{2}+1}$=$16+\frac{4}{{k}_{1}^{2}+{k}_{2}^{2}+1}$
=16+$\frac{4}{{k}_{1}^{2}+\frac{1}{4{k}_{1}^{2}}+1}$¡Ü18£¬
ÓÖ|EF|?|MN|£¾0£®
¡à|EF|?|MN|¡Ê£¨16£¬18]£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹Øϵ¡¢»ù±¾²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ÈôÁ½¸öƽÃæÓÐÒ»¸ö¹«¹²µã£¬ÔòËüÃÇÓÐÎÞÊý¸ö¹«¹²µã | |
B£® | ÈÎÒâÁ½ÌõÖ±ÏßÄÜÈ·¶¨Ò»¸öƽÃæ | |
C£® | ÈôµãA¼ÈÔÚƽÃæ¦ÁÄÚ£¬ÓÖÔÚƽÃæ¦ÂÄÚ£¬Ôò¦ÁÓë¦ÂÏཻÓÚÖ±Ïßb£¬ÇÒµãAÔÚÖ±ÏßbÉÏ | |
D£® | ÈôÒÑÖªËĸöµã²»¹²Ã棬ÔòÆäÖÐÈÎÒâÈýµã²»¹²Ïß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨-3£¬6£© | B£® | £¨-3£¬6$\sqrt{2}$£© | C£® | £¨-6£¬6£© | D£® | £¨-6£¬6$\sqrt{2}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ?x¡ÊR£¬x2+2¡Ý0 | B£® | ?x∉R£¬x2+2£¼0 | C£® | ?x¡ÊR£¬x2+2¡Ý0 | D£® | ?x¡ÊR£¬x2+2£¾0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{16}{3}$ | B£® | 4 | C£® | $\frac{8}{3}$ | D£® | $\frac{4}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com