精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}满足:a3=4,a5+a7=14,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

【答案】
(1)解:设等差数列{an}的首项为a1,公差为d,

∵a3=4,a5+a7=14,

∴a1+2d=4,2a1+10d=14,

∴a1=2,d=1,

∴an=2+(n﹣1)×1=n+1,

Sn=n×2+ n(n﹣1)×1=

即an=n+1,Sn=


(2)解:∵an=n+1,∴an2﹣1=(n+1)2﹣1=n(n+2),

∴bn= = ),

∴Tn=b1+b2+b3+b4+b5+…+bn2+bn1+bn

= (1﹣ + + + + +…+ + +

= (1+ )=


【解析】(1)根据等差数列的通项公式,列出方程,解出首项和公差,从而写出通项公式和求和公式;(2)根据{an}的通项,化简bn , 并拆成两项的差,注意前面乘一个系数,然后运用裂项相消求和,应注意消去哪些项,保留哪些项,可以多写几项,找出规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为.

(1)若对任意的 组成公差为4的等差数列,且,求

(2)若数列是公比为)的等比数列, 为常数,

求证:数列为等比数列的充要条件为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量ξ为这五名志愿者中参加A岗位服务的人数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=alnx+1(a>0).
(1)当x>0时,求证:
(2)在区间(1,e)上f(x)>x恒成立,求实数a的范围.
(3)当 时,求证: (n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市某矿山企业生产某产品的年固定成本为万元,每生产千件该产品需另投入万元,设该企业年内共生产此种产品千件,并且全部销售完,每千件的销售收入为万元,且

(Ⅰ)写出年利润(万元)关于产品年产量(千件)的函数关系式;

(Ⅱ)问:年产量为多少千件时,该企业生产此产品所获年利润最大?

注:年利润=年销售收入-年总成本.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等比数列,其前n项和为Sn , 已知a1+a4=﹣ ,且对于任意的n∈N*有Sn , Sn+2 , Sn+1成等差数列;
(1)求数列{an}的通项公式;
(2)已知bn=n(n∈N+),记 ,若(n﹣1)2≤m(Tn﹣n﹣1)对于n≥2恒成立,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),已知图中从左到右前三个小组的频率分别为 0.1,0.3,0.4,第一小组的频数为 5.

(1)求第四小组的频率;
(2)若次数在 75 次以上(含75 次)为达标,试估计该年级学生跳绳测试的达标率.
(3)在这次测试中,一分钟跳绳次数的中位数落在哪个小组内?试求出中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C: =1,设R(x0 , y0)是椭圆C上的任一点,从原点O向圆R:(x﹣x02+(y﹣y02=8作两条切线,分别交椭圆于点P,Q.

(1)若直线OP,OQ互相垂直,求圆R的方程;
(2)若直线OP,OQ的斜率存在,并记为k1 , k2 , 求证:2k1k2+1=0;
(3)试问OP2+OQ2是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案