精英家教网 > 高中数学 > 题目详情
9.甲、乙两艘轮船在某个泊位停靠的时间分别为6小时和4小时,假设它们在一昼夜的时间中随机的到达,试求这两艘轮船中至少一艘在停泊位等待的概率.

分析 由题意可知如两船到达的时间间隔超过了停泊的时间则不需要等待,要求一艘船停靠泊位时必须等待一段时间的概率即计算一船到达的时间恰好另一船还没有离开,此即是所研究的事件.

解答 解:设甲船在x点到达,乙船在y点到达,必须等待的事件需要满足如下条件
 $\left\{\begin{array}{l}{0<x<24}\\{0<y<24}\\{y-x<6}\\{x-y<4}\end{array}\right.$
P(A)=1-$\frac{\frac{1}{2}×20×20+\frac{1}{2}×18×18}{24×24}$=$\frac{107}{288}$.

点评 考查几何概率模型,考查用图形法求概率,求解此类题的关键是得出所给的事件对应的约束条件,作出符合条件的图象,由图形的测度得出相应的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在数列{an}中,对任意正整数n都有an+1-2an=0(an≠0),则$\frac{2{a}_{1}+{a}_{2}}{2{a}_{3}+{a}_{4}}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a,b,c∈R+
(1)比较:$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$与$\frac{9}{2(a+b+c)}$的大小
(2)当$\frac{b}{a}$+$\frac{2c}{b}$+$\frac{4a}{c}$取最小值m时,求m+$\frac{b+c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)的定义域为R,且对于任意x、y恒有f(xy)=f(x)+f(y),又x>1时,f(x)>0.
(1)判断f(x)的奇偶性性并加以证明.
(2)求证:f(x)在(0,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若直角三角形面积为4cm2.求此三角形周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知ab>0,求证:$\frac{b}{a}$+$\frac{a}{b}$≥2,并推导出式中等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断下列命题的正确性:
(1)若$\overrightarrow{|a|}$=$\overrightarrow{|b|}$,则$\overrightarrow{a}$=$\overrightarrow{b}$;
(2)若向量$\overrightarrow{a}$与$\overrightarrow{b}$不相等,则$\overrightarrow{a}$与$\overrightarrow{b}$是不共线的向量;
(3)单位向量都相等;
(4)相反向量是共线向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.集合A={x|x2-2x-3<0},B={x|x2<p},若B?A,则实数p的取值范围是(  )
A.(0,1]B.(-∞,1]C.(-1,3]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设m∈R,解关于x的不等式:m2x2+2mx-3<0.

查看答案和解析>>

同步练习册答案