精英家教网 > 高中数学 > 题目详情
已知两点A(-2,0),B(0,2),点C是圆x2+y2-2x=0上的任意一点,则△ABC的面积最小值是(  )
分析:求出直线方程,圆心坐标与半径,从而可得圆上的点到直线距离的最小值进而可求△ABC的面积最小值.
解答:解:直线AB的方程为
x
-2
+
y
2
=1
,即x-y+2=0
圆x2+y2-2x=0,可化为(x-1)2+y2=1,
∴圆心(1,0)到直线的距离为d=
|1-0+2|
2
=
3
2
2

∴圆上的点到直线距离的最小值为
3
2
2
-1

∵|AB|=2
2

∴△ABC的面积最小值是
1
2
×(
3
2
2
-1)×2
2
=3-
2

故选A.
点评:本题考查直线与圆的方程,考查点到直线距离公式,考查三角形面积的计算,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(0,2),点C是圆x2+y2-4x+4y+6=0上任意一点,则点C到直线AB距离的最小值是
(  )
A、2
2
B、3
2
C、3
2
-2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(2,0),动点P在y轴上的射影是H,且
PA
PB
=2
PH2

(1)求动点P的轨迹C的方程(6分)
(2)已知过点B的直线l交曲线C于x轴下方不同的两点M,N,求直线l的斜率的取值范围(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•天门模拟)已知两点A(-2,0),B(0,2),点P是曲线C:
x=1+cosa
y=sina
上任意一点,则△ABP面积的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(-2,0),B(2,0),直线AM、BM相交于点M,且这两条直线的斜率之积为-
3
4

(Ⅰ)求点M的轨迹方程;
(Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆(x-1)2+y2=r20<r<
3
2
)相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R.求△OQR的面积的最大值(其中点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,已知两点A(2,0),B(3,4),直线ax-2y=0与线段AB交于点C,且C分
AB
所成的比λ=2,则实数a的值为(  )
A、-4B、4C、-2D、2

查看答案和解析>>

同步练习册答案