【题目】设f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)对一切x∈R恒成立,给出以下结论:
①;
②;
③f(x)的单调递增区间是;
④函数y=f(x)既不是奇函数也不是偶函数;
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交,其中正确结论为_____
【答案】①②④
【解析】
先转化f(x)=asin2x+bcos2x,根据f(x)对一切x∈R恒成立,得到是f(x)的最大值或最小值,且f(x)的周期为,
①由相差四分之一个周期,由相邻最值点和零点间的关系判断.②利用轴对称判断,是否关于对称.③根据是f(x)的最大值或最小值结合单调性判断.④由f(x)是奇函数,f(x)是偶函数,判断.⑤根据三角函数的定义域和值域判断.
设f(x)=asin2x+bcos2x,
因为f(x)对一切x∈R恒成立,
所以是f(x)的最大值或最小值.
又因为f(x)的周期为,
①为四分之一个周期,所以,故正确.
②因为,关于对称,所以,故正确.
③若是f(x)的最大值,则;f(x)的单调递减区间,故错误.
④由,所以函数不可能转化为f(x)或f(x)的形式,所以函数y=f(x)既不是奇函数也不是偶函数,故正确.
⑤若存在经过点(a,b)的直线与函数f(x)的图象不相交,则直线与横轴平行且,不成立,故错误.
科目:高中数学 来源: 题型:
【题目】如图,正方形与梯形所在的平面互相垂直, ,,点在线段上.
(Ⅰ) 若点为的中点,求证:平面;
(Ⅱ) 求证:平面平面;
(Ⅲ) 当平面与平面所成二面角的余弦值为时,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
(I)求应从小学、中学、大学中分别抽取的学校数目。
(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2所学校均为小学的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五一”期间,甲乙两个商场分别开展促销活动.
(Ⅰ)甲商场的规则是:凡购物满100元,可抽奖一次,从装有大小、形状相同的4个白球、4个黑球的袋中摸出4个球,中奖情况如下表:
摸出的结果 | 获得奖金(单位:元) |
4个白球或4个黑球 | 200 |
3个白球1个黑球或3个黑球1个白球 | 20 |
2个黑球2个白球 | 10 |
记为抽奖一次获得的奖金,求的分布列和期望.
(Ⅱ)乙商场的规则是:凡购物满100元,可抽奖10次.其中,第次抽奖方法是:从编号为的袋中(装有大小、形状相同的个白球和个黑球)摸出个球,若该次摸出的个球颜色都相同,则可获得奖金元;记第次获奖概率.设各次摸奖的结果互不影响,最终所获得的总奖金为10次奖金之和.
①求证:;
②若某顾客购买120元的商品,不考虑其它因素,从获得奖金的期望分析,他应该选择哪一家商场?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率,抛物线的焦点恰好是椭圆的右焦点.
(1)求椭圆的标准方程;
(2)过点作两条斜率都存在的直线,设与椭圆交于两点,与椭圆交于两点,若是与的等比中项,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱中,平面,,,,以,为邻边作平行四边形,连接和.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com