【题目】已知正四面体的表面积为,为棱的中点,球为该正四面体的外接球,则过点的平面被球所截得的截面面积的最小值为______.
【答案】
【解析】
根据题意,根据正四面体的表面积求出棱长和正方体的边长,再利用正方体的体对角线等于外接球的直径,即可求出球的半径,当过点的截面到球心的距离最大距离时,截面圆的面积达最小值,最后利用球的截面的性质求出截面圆的半径,即可求出截面圆的面积最小值.
解:如图所示,球为正四面体的外接球,即为正方体的外接球,
正四面体的表面积为,
设正四面体的棱长为,则,
解得:,
所以正方体的棱长为:,
设正四面体的外接球的半径为,
则,即,
为棱的中点,过点作其外接球的截面,
当截面到球心的距离最大值时,截面圆的面积达最小值,
此时球心到截面距离等于正方体棱长的一半,即,
可得截面圆的半径为:,
所以截面圆的面积最小值为:.
故答案为:.
科目:高中数学 来源: 题型:
【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.
(Ⅰ)求, , 的值;
(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数;
(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,椭圆的中心在原点,点在椭圆上,且离心率为.
(1)求椭圆的标准方程;
(2)动直线交椭圆于, 两点, 是椭圆上一点,直线的斜率为,且, 是线段上一点,圆的半径为,且,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;
(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月7日,4月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?
参考公式: ,
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列叙述中正确的是( )
A.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
B.若三个平面两两相交,其中两个平面的交线与第三个平面平行.则另外两条交线平行;
C.如果是两条异面直线,那么直线一定是异面直线;
D.在中,,,,则绕所在直线旋转一周,所形成的几何体的轴截面面积为10.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com