精英家教网 > 高中数学 > 题目详情

【题目】已知正四面体的表面积为为棱的中点,球为该正四面体的外接球,则过点的平面被球所截得的截面面积的最小值为______.

【答案】

【解析】

根据题意,根据正四面体的表面积求出棱长和正方体的边长,再利用正方体的体对角线等于外接球的直径,即可求出球的半径,当过点的截面到球心的距离最大距离时,截面圆的面积达最小值,最后利用球的截面的性质求出截面圆的半径,即可求出截面圆的面积最小值.

解:如图所示,球为正四面体的外接球,即为正方体的外接球,

正四面体的表面积为

设正四面体的棱长为,则

解得:

所以正方体的棱长为:

设正四面体的外接球的半径为

,即

为棱的中点,过点作其外接球的截面,

当截面到球心的距离最大值时,截面圆的面积达最小值,

此时球心到截面距离等于正方体棱长的一半,即

可得截面圆的半径为:

所以截面圆的面积最小值为:.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求 的值;

(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数

(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在平面直角坐标系中,椭圆的中心在原点在椭圆且离心率为.

1求椭圆的标准方程;

2动直线交椭圆 两点 是椭圆上一点,直线的斜率为,且 是线段上一点,圆的半径为,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是

A. yx具有正的线性相关关系

B. 回归直线过样本点的中心(

C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg

D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形与矩形所在平面相互垂直, .

(Ⅰ)求证: 平面

(Ⅱ)求四棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差x/℃

10

11

13

12

8

发芽数y/颗

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月74月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列叙述中正确的是(

A.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;

B.若三个平面两两相交,其中两个平面的交线与第三个平面平行.则另外两条交线平行;

C.如果是两条异面直线,那么直线一定是异面直线;

D.中,,则所在直线旋转一周,所形成的几何体的轴截面面积为10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=.

(1)化简f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的展开式中第6项的系数最大,则不含的项等于__________

查看答案和解析>>

同步练习册答案