【题目】如图,在正方体中, 分别是棱的中点, 为棱上一点,且异面直线与所成角的余弦值为.
(1)证明: 为的中点;
(2)求平面与平面所成锐二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1)以为坐标原点,建立如图所示的空间直角坐标系,不妨令正方体的棱长为2,设,利用,解得,即可证得;
(2)分别求得平面与平面的法向量,利用求解即可.
试题解析:
(1)证明:以为坐标原点,建立如图所示的空间直角坐标系.
不妨令正方体的棱长为2,
则, , , , ,
设,则, ,
所以 ,
所以,解得(舍去),即为的中点.
(2)解:由(1)可得, ,
设是平面的法向量,
则.令,得.
易得平面的一个法向量为,
所以.
所以所求锐二面角的余弦值为.
点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
【题型】解答题
【结束】
22
【题目】已知椭圆的短轴长为2,且椭圆过点.
(1)求椭圆的方程;
(2)设直线过定点,且斜率为,若椭圆上存在两点关于直线对称, 为坐标原点,求的取值范围及面积的最大值.
科目:高中数学 来源: 题型:
【题目】已知,函数
(1)讨论的单调区间和极值;
(2)将函数的图象向下平移1个单位后得到的图象,且为自然对数的底数)和是函数的两个不同的零点,求的值并证明: 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于x≥a均有g(x)<f(x),求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[﹣ , ]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是( )
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣ , )
D.(﹣∞,﹣ ]∪( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中及图中的值;
(2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.
【答案】(1), , ;(2)人.
【解析】试题分析:(1)由题意, 内的频数是10,频率是0.25知, ,所以,则, .(2)高一学生有800人,分组内的频率是,人数为人.
试题解析:
(1)由内的频数是10,频率是0.25知, ,所以.
因为频数之和为40,所以, .
.
因为是对应分组的频率与组距的商,所以.
(2)因为该校高一学生有800人,分组内的频率是,
所以估计该校高一学生参加社区服务的次数在此区间内的人数为人.
【题型】解答题
【结束】
18
【题目】已知直线经过抛物线的焦点,且与交于两点.
(1)设为上一动点, 到直线的距离为,点,求的最小值;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆N的标准方程为(x-5)2+(y-6)2=a2(a>0).
(1)若点M(6,9)在圆上,求a的值;
(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, , (其中是自然对数的底数).
(1)若曲线在点处的切线与直线垂直,求实数的值;
(2)记函数,其中,若函数在内存在两个极值点,求实数的取值范围;
(3)若对任意, ,且,均有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列{an}的前n项和Sn>1,且6Sn=(an+1)(an+2),n∈N* .
(1)求{an}的通项公式;
(2)若数列{bn}满足bn= ,求{bn}的前n项和.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com