【题目】(本小题共13分)已知函数 的最小正周期为.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间及其图象的对称轴方程.
【答案】解:(Ⅰ)………………………2分
, …………………………3分
因为最小正周期为,所以,解得,………………………4分
所以, …………………… 5分
所以. …………………………6分
(Ⅱ)分别由,
可得,………8分
所以,函数的单调增区间为;
的单调减区间为………………………10分
由得.
所以,图象的对称轴方程为. ………………………13分
【解析】
试题(Ⅰ) ,因为最小正周期为,可得, 可得,即可求出.(Ⅱ)分别由,即可求出单调区间;再根据,可得
图象的对称轴方程.
试题解析:解:(Ⅰ)
,
因为最小正周期为,所以,解得,
所以,
所以.
(Ⅱ)分别由,
可得,
所以,函数的单调增区间为;
的单调减区间为
由得.
所以,图象的对称轴方程为.
科目:高中数学 来源: 题型:
【题目】某商场统计了2008年到2018十一年间某种生活必需品的年销售额及年销售额增速图,其中条形图表示年(单位:万元),折线图年销售额为年销售额增长率(%).
(1)由年销售额图判断,从哪年开始连续三年的年销售额方差最大?(结论不要求证明)
(2)由年销售额增长率图,可以看出2011年销售额增长率是最高的,能否表示当年销售额增长最大?(结论不要求证明)
(3)从2010年至2014年这五年中随机选出两年,求至少有一年年增长率超过20%的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生产台数(万台) | 2 | 3 | 4 | 5 | 6 | 7 | 10 | 11 |
该产品的年利润(百万元) | 2.1 | 2.75 | 3.5 | 3.25 | 3 | 4.9 | 6 | 6.5 |
年返修台数(台) | 21 | 22 | 28 | 65 | 80 | 65 | 84 | 88 |
部分计算结果:,,, , |
注:年返修率=
(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.
规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.
(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;
(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com