精英家教网 > 高中数学 > 题目详情
5.S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{20×21}$=$\frac{20}{21}$.

分析 利用$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,即可得出.

解答 解:∵$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴S=$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{20×21}$
=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{20}-\frac{1}{21})$
=1-$\frac{1}{21}$
=$\frac{20}{21}$.
故答案为:$\frac{20}{21}$.

点评 本题考查了“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.若sin(α-β)cosβ+cos(α-β)sinβ=-m,且α为第四象限,则cosα的值为(  )
A.$\sqrt{1-{m^2}}$B.$-\sqrt{1-{m^2}}$C.$\sqrt{{m^2}-1}$D.$-\sqrt{{m^2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y∈(0,+∞),且满足$\frac{1}{x}+\frac{1}{2y}=1$,那么x+4y的最小值为(  )
A.$3-\sqrt{2}$B.$3+2\sqrt{2}$C.$3+\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2016年是红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神,首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.
公园
获得签名人数45603015
然后再各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.
(1)求此活动中各公园幸运之星的人数;
(2)若乙公园中每位幸运之星中任选两人接受电视台记者的采访,求这两人均来自乙公园的概率;
(3)电视台记者对乙公园的签名人进行了是否有兴趣研究“红军长征”历史的问卷调查,统计结果如下(单位:人):
有兴趣无兴趣合计
25530
151530
合计402060
据此判断能否在犯错误的概率不超过0.01的前提下认为有兴趣研究“红军长征”历史与性别有关.
临界值表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
参考公式:K2=$\frac{k(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系中,已知顶点$A(-\sqrt{2},0)$、$B(\sqrt{2},0)$,直线PA与直线PB的斜率之积为$\frac{1}{2}$,则动点P的轨迹方程为(  )
A.$\frac{x^2}{2}-{y^2}$=1(x≠±$\sqrt{2}$)B.$\frac{x^2}{2}-{y^2}$=1C.$\frac{x^2}{2}+{y^2}$=1(y≠0)D.$\frac{y^2}{2}+{x^2}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(x+1)2-alnx.
(Ⅰ)讨论函数的单调性;
(Ⅱ)若函数f(x)在区间(0,+∞)内任取两个不相等的实数x1,x2,不等式$\frac{{f({x_1}+1)-f({x_2}\;+1)}}{{{x_1}-{x_2}}}>1$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,已知顶点$A(0,-\sqrt{2})$、$B(0,\sqrt{2})$,直线PA与直线PB的斜率之积为-2,则动点P的轨迹方程为(  )
A.$\frac{y^2}{2}+{x^2}$=1B.$\frac{y^2}{2}+{x^2}$=1(x≠0)C.$\frac{y^2}{2}-{x^2}$=1D.$\frac{y^2}{2}+{x^2}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=($\frac{1}{2}$)${\;}^{\frac{3}{2}}$,b=lnπ,c=log0.5$\frac{3}{2}$,则(  )
A.c<a<bB.a<c<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow a=(3,\sqrt{3})$,$\overrightarrow b=(0,x)$,若$\overrightarrow a•\overrightarrow b=|\overrightarrow a|$,则实数x=2.

查看答案和解析>>

同步练习册答案