精英家教网 > 高中数学 > 题目详情
9.设复数z满足|z-3-4i|=1,其中i为虚数单位,则|z|的最大值是(  )
A.3B.4C.5D.6

分析 设z=x+yi,由复数z满足|z-3-4i)|=1可知,z在以(3,4)为圆心的单位圆上,由此求|z|的最大值.

解答 解:设z=x+yi,复数z满足|z-(3+4i)|=1,
所以(x-3)2+(y-4)2=1,表示(x,y)到点(3,4)的距离为1,所以(x,y)到原点的距离的最大值为$\sqrt{{3}^{2}+{4}^{2}}$+1=6;
故选:D.

点评 本题考查了复数的几何意义的运用;关键是明确已知z在以(3,4)为圆心的单位圆上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}-x+2,x≥a\\{x^2}+3x+2,x<a.\end{array}\right.$恰有两个不同的零点,则a的取值范围是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.(1)“已知函数f(x)=x2-mx+1对一切实数x,f(x)>0恒成立”;
(2)“关于x的不等式x2<9-m2有实数解”.
若以上结论中(1)错误并且(2)正确,则实数m的取值范围为(-3,-2]∪[2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线C与曲线C'的极坐标的方程; 
(2)若过点$A({2\sqrt{2},\frac{π}{4}})$(极坐标)且倾斜角为$\frac{π}{3}$的直线l与曲线C交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an},{bn}前n项和分别为Sn,Tn,an+1-an=2(bn+1-bn),b1=3,Sn=n2+2n+3,则Tn=$\frac{1}{2}$(n2+2n+3).(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l经过点P(-2,5),且斜率为$-\frac{3}{4}$,若直线m与l平行且两直线间的距离为3,则直线m的方程为3x+4y+1=0,或 3x+4y-29=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,则λμ=$\frac{12}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知一个直角三角形的两条直角边长分别是2,$2\sqrt{3}$;以这个直角三角形的斜边所在直线为旋转轴,其余两边旋转一周形成的面所围成的旋转体,求这个旋转体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥各个侧面中,最大的侧面面积为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

同步练习册答案