精英家教网 > 高中数学 > 题目详情
2.平面内2条相交直线最多有1个交点;3条相交直线最多有3个交点;试猜想6条相交直线最多有15个交点.

分析 由已知中两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点,我们分析n值变化过程中,交点最多个数的变化趋势,找出规律后,归纳为一般性公式即可得到答案.

解答 解:令n条直线最多交点个数为M:
两条相交直线最多有1个交点,即n=2,M=1,
三条直线最多有3个交点,即n=3,M=3,
四条直线最多有6个交点点,即n=4,M=6,
五条直线最多有10个交点,即n=5,M=10,

则n条直线最多交点个数M=1+2+3+4+…+(n-1)=$\frac{n(n-1)}{2}$,
当n=6时,$\frac{6×5}{2}$=15,
故答案为15.

点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在数列中{an}中,a1=2,a4=9,{bn}是等比数列,且bn=an-1
(1)求{an}的通项公式;
(2)求{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=ln2,c=5-0.5,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点,过坐标原点的直线依次与双曲线C的左、右支交于点P,Q,若|PQ|=2|QF|,∠PQF=60°,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$1+\sqrt{3}$C.$2+\sqrt{3}$D.$4+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,矩形ABCD中,$AB=2\sqrt{2}$,$AD=\sqrt{2}$,M为DC的中点,将△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求证:平面D′AM⊥平面ABCM;
(2)若E为D′B的中点,求三棱锥A-D′EM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.从5个不同的小球中选4个放入3个箱子中,要求第一个箱子放入1个小球,第二个箱子放入2个小球,第三个箱子放入1个小球,则不同的放法共有(  )
A.120种B.96种C.60种D.48种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数在区间[0,+∞)上是增函数的是(  )
①y=2x ②y=x2+2x-1 ③y=|x+2|④y=|x|+2.
A.①②B.①③C.②③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|lnx|,g(x)=k(x-1)(k∈R).
(1)若两个实数a,b满足0<a<b,且f(a)=f(b),求4a-b的取值范围;
(2)证明:当k<1时,存在x0>1,使得对任意的x∈(1,x0),恒有f(x)>g(x);
(3)已知0<a<b,证明:存在x0∈(a,b),使得$\frac{lnb-lna}{b-a}=\frac{1}{x_0}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,BA⊥AD,AD∥BC,AB=2,BC=1,PA=AD=3,E是PD上一点,且CE∥平面PAB,则C到面ABE的距离为$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

同步练习册答案