精英家教网 > 高中数学 > 题目详情
9.已知函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是减函数,则a的取值范围是(-∞,$\frac{9}{2}$].

分析 函数为复合函数,且外函数为减函数,只要内函数一元二次函数在(3,+∞)上是增函数且在(3,+∞)上恒大于0即可,由此得到关于a的不等式求解.

解答 解:令t=x2-ax+a,
则原函数化为$g(t)=lo{g}_{\frac{1}{2}}t$,此函数为定义域内的减函数.
要使函数y=log${\;}_{\frac{1}{2}}$(x2-ax+a)在(3,+∞)上是减函数,
则内函数t=x2-ax+a在(3,+∞)上是增函数,
∴$\left\{\begin{array}{l}{\frac{a}{2}≤3}\\{{3}^{2}-3a+a≥0}\end{array}\right.$,解得:a$≤\frac{9}{2}$.
∴a的取值范围是(-∞,$\frac{9}{2}$].
故答案为:(-∞,$\frac{9}{2}$].

点评 本题考查复合函数的单调性,复合的两个函数同增则增,同减则减,一增一减则减,注意对数函数的定义域是求解的前提,考查学生发现问题解决问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=(x2-2x-3)(x2-2x-5)的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如果命题“若x⊥y,y∥z,则x⊥z”不成立,那么字母x、y、z在空间所表示的几何图形一定是x是①,y是①,z是②.①直线;②平面(用①②填空)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图为长方体积木块堆成的几何体的三视图,此几何体共由4块木块堆成.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=(a2-3a+3)ax是指数函数,则函数y=bx+2-a必过定点(  )
A.(0,1)B.(-2,-1)C.(0,-2)D.(-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(3x-1)成立的x的取值范围是($\frac{1}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=2x-3,其中x∈{x∈N|1≤x≤$\frac{10}{3}$},则函数的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α∈($\frac{π}{6}$,π),$\overrightarrow{a}$=(sin(2α+β),sinβ),$\overrightarrow{b}$=(3,1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,设tanα=x,tanβ=y,记y=f(x),当f(x)=$\frac{1}{3}$时,α=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=xekx(k≠0)
(1)函数f(x)的单调区间;
(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

查看答案和解析>>

同步练习册答案