精英家教网 > 高中数学 > 题目详情
求过点(1,-1)与曲线f(x)=x3-2x相切的直线方程.
分析:设切点为(x0,y0),则y0=x03-2x0由于直线l经过点(1,-1),可得切线的斜率,再根据导数的几何意义求出曲线在点x0处的切线斜率,便可建立关于x0的方程.从而可求方程.
解答:解:若直线与曲线切于点(x0,y0)(x0≠0),则k=
y0+1
x0-1
=
x
3
0
-2x0+1
x0-1
=
x
2
0
+x0-1

∵y′=3x2-2,∴y′|x=x0=3x02-2,
x
2
0
+x0-1
=3x02-2,
∴2x02-x0-1=0,∴x0=1,x0=-
1
2

∴过点A(1,-1)与曲线f(x)=x3-2x相切的直线方程为x-y-2=0或5x+4y-1=0.
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据一点坐标和斜率写出直线的方程,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2-5x-6和函数g(x)=
k-2
x
(k≠2)

(Ⅰ) 求过点(-1,2)且与曲线f(x)相切的直线方程;
(Ⅱ)若函数h(x)=f(x)+
1
2
x+12
的图象与函数g(x)的图象有且只有一个公共点,求k的取值范围;
(Ⅲ)设t=
1
|g(x-1)|
+
1
|g(x-2)|
+…+
1
|g(x-(2k+1))|
(k∈N*,k>2)
,比较
t2-k2
t2+k2
t-k
t+k
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax-1(e为自然对数的底数).
(I)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;
(II)若f(x)≥x2在(0,1 )上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一上学期期末考试数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知圆C的方程为x2+y2=4.

(1)求过点P(1,2)且与圆C相切的直线l的方程;

(2)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2,求直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省石家庄市毕业班第一次模拟考试文科数学试卷A(解析版) 题型:解答题

(本小题满分12分)

已知函数f(x)=ex+ax-1(e为自然对数的底数).

(Ⅰ)当a=1时,求过点(1,f(1))处的切线与坐标轴围成的三角形的面积;

(II)若f(x)x2在(0,1 )上恒成立,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案