精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2B-sin2A=sin2C-sinAsinC.
(Ⅰ)求角B的值;
(Ⅱ)若△ABC的面积为$\sqrt{3}$,求a+c取得最小值时b的值.

分析 (Ⅰ)运用正弦定理化角为边,再由余弦定理可得角B;
(Ⅱ)由三角形面积公式可得ab=4,由余弦定理,基本不等式即可得解b的值.

解答 (本题满分为12分)
解:(Ⅰ)由正弦定理可得,sin2A+sin2C-sinAsinC=sin2B即为a2+c2-ac=b2
由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{ac}{2ac}$=$\frac{1}{2}$,
由0<B<π,
则B=$\frac{π}{3}$;
(Ⅱ)由已知S=$\frac{1}{2}$acsinB=$\frac{\sqrt{3}}{4}$ac=$\sqrt{3}$,所以ac=4,…(8分)
可得:a+c≥2$\sqrt{ac}$=4,即a+c的最小值为4,当且仅当a=c=2时等号成立,
此时,由余弦定理b2=a2+c2-2accosB=22+22-2×$2×2×\frac{1}{2}$=4,…(10分)
∴b=2.…(12分)

点评 本题主要考查了正弦定理,余弦定理及基本不等式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且过点Pn(n,Sn)的切线的斜率为kn
(I)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•({k}_{n}+1)}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x<0},B={x|x2-x≥0},则A∩B=(  )
A.(0,1)B.(-∞,0)C.[1,+∞)D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的内角A,B,C所对的边分别为a,b,c,若A=30°,a=1,则$\frac{b+c}{sinB+sinC}$等于(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.不等式(x-1)(2-x)>0的解集是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,集合A={x|x2-1<0},B={x|x(x-2)>0},则A∩(∁uB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0≤x<1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC三内角A、B、C的对边分别为a、b、c,且acosC+$\sqrt{3}$csinA-b-c=0,
(1)求角A的值;
(2)求函数f(x)=cos2x+4sinAsinx在区间$[\frac{2π}{7},\frac{3π}{4}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{k{x}^{2}}{{e}^{x}}$(k>0).
(1)求函数f(x)的单调区间;
(2)当k=1时,若存在x>0,使lnf(x)>ax成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案