【题目】在平面直角坐标系xOy中,椭圆的左、右顶点分别为A、B,右焦点为F,且点F满足,由椭圆C的四个顶点围成的四边形面积为.过点的直线TA,TB与此椭圆分别交于点,,其中,,.
(1)求椭圆C的标准方程;
(2)当T在直线时,直线MN是否过x轴上的一定点?若是,求出该定点的坐标;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的图象的一个最高点为(),与之相邻的一个对称中心为,将f(x)的图象向右平移个单位长度得到函数g(x)的图象,则( )
A.g(x)为偶函数
B.g(x)的一个单调递增区间为
C.g(x)为奇函数
D.函数g(x)在上有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线C:()的焦点为
(1)动直线l过F点且与抛物线C交于M,N两点,点M在y轴的左侧,过点M作抛物线C准线的垂线,垂足为M1,点E在上,且满足连接并延长交y轴于点D,的面积为,求抛物线C的方程及D点的纵坐标;
(2)点H为抛物线C准线上任一点,过H作抛物线C的两条切线,,切点为A,B,证明直线过定点,并求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆,点是圆内一个定点,点是圆上任意一点,线段的垂直平分线和半径相交于点.当点在圆上运动时,点的轨迹为椭圆.
(1)分别为椭圆的左右焦点,为椭圆上任意一点,若,求的面积;
(2)如图,若椭圆,椭圆(,且),则称椭圆是椭圆的倍相似椭圆.已知是椭圆的倍相似椭圆,若椭圆的任意一条切线交椭圆于两点、,试求弦长的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,.已知函数,函数,则下列命题中真命题的个数是( )
①图象关于对称;
②是奇函数;
③在上是增函数;
④的值域是.
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定“口径误差”的计算方式为:管件内外两个口径实际长分别为,标准长分别为则“口径误差”为只要“口径误差”不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.
(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;
(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.
①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;
②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;
③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;
④乙同学连续九次测验成绩每一次均有明显进步.
其中正确的个数为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).
(1)若λ=时,证明:△ABC为直角三角形;
(2)若·=λ2,且c=3,求λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com